Der Mathematische Monatskalender: Adam Riese (1492–1559): Der erfolgreiche Mathelehrer
»Das macht nach Adam Riese ...« ist eine sprichwörtliche Redewendung, durch die betont werden soll, dass eine vorgelegte Rechnung richtig ist. Ries oder Riese – zu Lebzeiten des Rechenmeisters werden Namen in der deutschen Sprache noch dekliniert und so kommt es zum angehängten »e«; man findet übrigens auch die Schreibweisen Ris, Rise, Ryse und Reyeß.
Über seine Herkunft und seine Jugendzeit weiß man nur wenig: Er selbst gibt an, in Staffelstein (bei Bamberg) geboren zu sein; sein Vater besitzt dort eine Stockmühle (eine Mühle mit horizontaler Aufhängung des Mühlrads). Es liegen jedoch keinerlei Informationen darüber vor, welche Ausbildung er absolviert, oder darüber, ob er eine Universität besucht hat.
1518 wird er in Erfurt sesshaft, leitet eine Rechenschule, in der er Handwerkern und Kaufleuten das Rechnen beibringt, und verfasst sein erstes Rechenbuch »Rechenung auff der linihen ...«, welches das Rechnen auf den Linien eines Rechenbretts in der Schreibweise der römischen Zahlen erläutert – es ist vor allem für Kinder bestimmt.
Vier Jahre später erscheint sein zweites Buch »Rechenung auff der linihen unnd federn ...«, in dem zusätzlich das schriftliche Rechnen (deshalb: mit der Feder) mit den indisch-arabischen Ziffern erläutert wird – geschrieben vor allem für Lehrlinge der Kaufmanns- und Handwerksberufe. Das Buch ist so erfolgreich, dass es zu seinen Lebzeiten 42-mal aufgelegt und bis ins 17. Jahrhundert nachgedruckt wird.
1522 zieht er nach Annaberg um, einer aufstrebenden Stadt im Erzgebirge, die durch den Silberbergbau reich geworden ist. Dort verfasst er sein drittes Rechenbuch »Rechenung nach der lenge/ auff den Linihen und Feder ...«‚ das er jedoch wegen der hohen Kosten zunächst nicht in Druck geben kann. Erst durch Unterstützung des Kurfürsten Moritz von Sachsen erscheint das Buch im Jahr 1550; es enthält das einzige Porträt des Adam Ries, das auch auf der Briefmarke oben abgebildet ist.
Adam Ries heiratet im Jahre 1525 Anna Leuber, Tochter eines Freiberger Schlossermeisters; mit ihr hat er (mindestens) acht Kinder. Er kauft ein Haus in Annaberg und leistet den Bürgereid ab.
Adam Ries verdient zunächst sein Geld als Rezess-Schreiber: Er führt Buch über die Gewinne und Verluste der Bergwerke. 1532 wird er dann zum herzoglichen Berg- und Gegenschreiber ernannt; er ist verantwortlich für die Verwaltung der Gruben – bei Unkorrektheiten müsste er mit seinem Vermögen haften. Im folgenden Jahr ernennt ihn der Herzog zum Zehntner des Bergamtes, das heißt, er hat dafür zu sorgen, dass der zehnte Teil des Gewinns an den Landesherrn abgeführt wird.
Um das einfache Volk, das nicht lesen, schreiben und rechnen kann, vor Betrug zu bewahren, verfasst er 1533 die »Brotordnung«. In dieser ist tabellarisch festgehalten, welches Gewicht ein Brot haben muss, das einen Pfennig kostet – je nachdem, welche aktuellen Preise für Getreide und Mehl gelten. Drei Jahre später erscheint »Ein Gerechnent Büchlein auff den Schöffel, Eimer und Pfundgewicht«, in dem erläutert wird, wie sich die verschiedenen Maß- und Gewichtseinheiten umrechnen lassen. 1539 erfolgt seine Ernennung zum »Kurfürstlich Sächsischen Hofarithmeticus«, ein Ehrentitel, der ihm für seine Verdienste verliehen wird. Nach seinem Tod im Jahr 1559 führen drei Söhne die Arbeit des Vaters als Rechenmeister in Annaberg fort.
Mit seinen in verständlicher Sprache verfassten Büchern trägt Adam Ries wesentlich dazu bei, dass mehr Menschen das Rechnen lernen (können) als zuvor; auch verstärken seine Bücher den Prozess, die deutsche Sprache zu vereinheitlichen.
Das erste Buch von Adam Ries mit dem vollständigen Titel »Rechenung auff der linihen gemacht durch Adam Riesen vonn Staffelsteyn in massen man es pflegt tzu lern in allen rechenschulen gruntlich begriffen anno 1518« enthält eine große Sammlung von Aufgaben (mit – nicht begründeten – Lösungen), die sich an Problemen des Alltags orientieren, vor allem Berechnung von Preisen nach dem Dreisatz, wobei die Umrechnungen komplizierter sind als heute (1 Gulden = 21 Groschen = 252 Pfennige).
Zum Rechnen »auf den Linien« verwendet man Rechenpfennige, die auf ein Tuch oder Brett mit Linien gelegt werden. Die Linien haben – von unten nach oben – die Bedeutung 1, 10, 100, 1000 (entsprechend den römischen Zahlen I, X, C, M). Werden Rechenpfennige in die Zwischenräume (»spacium«) gelegt, so entspricht dies 5, 50, 500 (also V, L, D).
Beim Addieren und Multiplizieren benötigt man die Technik des Bündelns (Elevation): Wenn fünf Münzen auf einer Linie liegen, ersetzt man sie durch eine Münze im darüber liegenden Spacium, und, wenn zwei Münzen im Spacium liegen, durch eine Münze auf der darüber liegenden Linie. Beim Subtrahieren und Dividieren muss man – wenn notwendig – entsprechend »aufbündeln« (Resolution). Beim Vervielfachen mit einstelligen Faktoren wird die Anzahl der Münzen auf einer Linie oder im Spacium erst entsprechend vervielfacht, dann gebündelt. Der Faktor 10 bewirkt einen Sprung der Münzen auf die darüber liegende Linie beziehungsweise in das nächste Spacium.
Das zweite Buch von Ries mit dem vollständigen Titel »Rechenung auff der linihen unnd federn in zal/maß vnd gewicht auff allerley handierung gemacht vnd zusamen gelesen durch Adam Riesen vö Staffelsteyn Rechenmeyster zu Erffurdt im 1522. Jar« enthält zusätzlich neben den typischen Aufgaben des Wirtschaftslebens (Zins- und Zinseszinsrechnen, Mischungsaufgaben, Umrechnung von Währungen und Maßen) auch Aufgaben aus der Unterhaltungsmathematik. Außerdem verwendet er die Methode des »doppelten falschen Ansatzes« (»Regula falsi«).
Beispiel zur Methode der Regula falsi: »Einer spricht: Gott grüße euch 30 Gesellen. Antwortet einer: Wenn wir noch einmal so viele und halb so viele wären, so wären wir dreißig Personen. Die Frage: Wie viele sind es gewesen?«
Bei dem von Ries angegebenen »Rezept« zur Lösung macht man zwei Rateversuche: Wenn die Gruppe aus 18 Personen bestehen würde, ergäbe sich 18 + 18 + 9 = 45, also 15 zuviel (von Ries als Fehlbetrag oder Lüge bezeichnet). Geht man von 10 Personen aus, erhält man 10 + 10 + 5 = 25, also 5 zu wenig. Die tatsächliche Personenzahl erhält man, wenn die beiden Werte 18 und 10 kreuzweise mit den Fehlbeträgen multipliziert und dann deren Summe durch die Summe der Fehlbeträge teilt.
Das dritte Rechenbuch »Rechenung nach der lenge auff der linihen und Feder. Darzu forteil und behendigkeit durch die Proportiones / Practica genant / Mit grüntlichem vnterricht des visierens. Durch Adam Riesen« enthält als Anhang die damals übliche Visiermethode zur Bestimmung des Volumens eines Fasses – ein Verfahren, das Johannes Kepler (1571 – 1630) zum Anlass nimmt, eine eigene Berechnungsmethode zu entwickeln (Keplersche Fassregel).
Adam Ries ist nicht nur ein methodisch begabter Rechenmeister, sondern auch einer der führenden »Cossisten« – das sind die Mathematiker, die mit Variablen umgehen – nach dem italienischen cosa (wörtlich: Sache), bereits bei Luca Pacioli (1445 – 1517) im Sinne von Variable verwendet. Seine Algebra-Bücher mit dem Titel »Coß« aus den Jahren 1524 und 1550 erscheinen in gedruckter Form allerdings erst anlässlich seines 500. Geburtstages im Jahr 1992.
Während seine Rechenbücher die Regeln in Wortform beschreiben, verwendet er in »Coß« durchgängig eine algebraische Schreibweise; dabei benutzt er – wie die anderen Cossisten – eigene Symbole für die Variablen und deren Potenzen. Er bezieht sich auf die Algebra des Mohammed Ibn Musa al-Kharizmi (780 – 850), wenn er erläutert, wie man verschiedene Typen von Gleichungen ersten und höheren Grades löst – in der heutigen Schreibweise:
\(ax = b,\ ax^2 = b,\ ax^3 = b,\ ax^4 = b,\ x^2 + ax = b\),
\(x^2 – ax = -b,\ x^2- ax = b\) sowie \(x^{2k} + ax^k = b\) mit \(a, b, k \in \mathbb{N}\) und \(k > 1\).
In »Coß« erläutert Ries auch die Neunerprobe zur Rechenkontrolle bei Summen, Differenzen und Produkten. Zunächst zeichnet man ein Kreuz; links beziehungsweise rechts trägt man den Neunerrest des ersten beziehungsweise zweiten Operanden ein, oben den Neunerrest der Summe (Differenz, Produkt) der beiden Reste, unten den Neunerrest des zuvor berechneten Ergebnisses. Die Probe ist erfüllt, wenn die obere und untere Zahl gleich sind. (Das Verfahren entdeckt natürlich keine Fehler, die ein Vielfaches von 9 sind.)
Beispiel »aus Coß«: Als Summe von 7869 und 8796 hat man 16 665 berechnet. Teilt man 7869 durch 9, so bleibt der Rest 3 (Eintragung links). Den gleichen Rest erhält man für den zweiten Summanden 8796 (Eintragung rechts). Die Summe der beiden Reste ist 6 (oben). Schließlich ergibt sich bei der Division der Zahl 16 665 durch 9 ebenfalls der Rest 6.
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.