Direkt zum Inhalt

Kommentare - - Seite 3

Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
  • Warum entweicht die Luft nicht ins Weltall?

    24.09.2024, Frank Sommer
    Lieber Herr Freistetter,

    ich habe Ihren Artikel mit großem Interesse gelesen, insbesondere das Thema „Warum entweicht die Luft nicht ins Weltall?“. Die Erläuterungen zur Erdatmosphäre und den physikalischen Prinzipien fand ich sehr aufschlussreich.

    Jedoch ist mir aufgefallen, dass die Rolle des Magnetfelds in diesem Zusammenhang nicht thematisiert wurde. Das Magnetfeld spielt eine wichtige Rolle beim Schutz unserer Atmosphäre vor dem Sonnenwind und könnte das Verständnis der Thematik erheblich erweitern. Studien zeigen, dass das Magnetfeld in Kombination mit der Gravitation entscheidend dafür ist, die Atmosphäre zu halten; die Gravitation ist hierbei etwa zu 80 % verantwortlich, während das Magnetfeld etwa 20 % der Sicherheit der Atmosphäre ausmacht.

    Ich wäre sehr dankbar, wenn Sie vielleicht in einer zukünftigen Überarbeitung oder in einem weiteren Artikel auf diesen Aspekt eingehen könnten.

    Vielen Dank für Ihre großartige Arbeit und Ihr Engagement für dieses spannende Thema!

    Mit freundlichen Grüßen,
    Frank Sommer
  • Freistetters Formelwelt: Warum entweicht die Luft nicht ins Weltall?

    23.09.2024, Sylvia Dürr
    Superinteressanter Beitrag, luftig leicht, auch für ne alte Oma verständlich. Fehlt nur, dass die hohe Bergkraxelei deweilen dümmer macht, leider...
    😉
  • Ketten und Peitschen

    21.09.2024, Paul S
    Jede gerade Strecke, die man unendlich zu verlängern versucht, geht irgendwann einmal ums Universum rum und wird zum Kreis.

    Was überhaupt krumm und gerade ist, hängt von Zeit und Gravitation ab, Sie können ja eine Gerade auf ein Blatt Papier malen, es zerknüllen, zu einem Rohr drehen, und es bleibt trotzdem eine Gerade, wenn Sie in dem Papier leben und sich mit knüllen. Selbst wenn das Blatt auf einem Tisch liegt, wird es von der Schwerkraft verzerrt, und wenn Sie es entlang einer schnurgeraden Tangente biegen, die die Erdkugel berührt, wird es für die Erdlinge konkav.

    In welchem Winkel die Ausfahrt von der Autobahn abbiegt, hängt davon ab, wie schnell Sie sich darauf zu bewegen.

    Nicht mal Selbem das Gleiche weggenommen ergibt Gleiches, wenn Sie 10 Gramm Gewicht von ein und demselben Ziegelstein wegnehmen, je nachdem, ob Sie so groß sind wie ein Berg, oder so groß wie ein Sandkorn.

    Und so müssen die Resultate der Geometrie genauso relativiert und im Kontext betrachtet werden, wie die Resultate der Philosophie: Sie sind absolute Wahrheiten – wenn das Absolute zufällig gerade passt.

    Eine absolute Wahrheit ist immer und überall und ohne Ausnahme wahr. Nur ist „immer und überall und ohne Ausnahme“ immer nur der Inhalt einer Blase, die ihre Struktur lange genug aufrecht erhalten kann, um so was wie Zeit und Raum zu kennen, sonst lebt sie ja nicht lange genug, um zwischen wahr und falsch unterscheiden zu müssen – existiert etwas, das so kurz existiert, dass es sich nicht mal selbst bemerken kann?

    Ein wichtiges Schlüsselelement des Universums ist das Non Serviam – das Chaos. Die Energie. Die Freiheit. Ein Zustand, der es nicht erträgt, an Regeln gebunden zu sein. Er will Veränderung. Er will mehr. Ganz egal, was für Regeln Sie aufstellen, er will sie brechen. Hat es keine Regeln, will es welche haben. Geben Sie ihm alles, was er will, will er einen neuen Willen haben. Geben Sie ihm alles, was existiert, ist ihm die Existenz zu wenig. Geben Sie ihm alles, was möglich ist, sind unendliche Möglichkeiten zu wenig. Geben Sie ihm das Unmögliche, es wird ihm zu viel sein. Sein ist zu wenig. Zu eng. Zu klein. Freiheit ist nicht, Freiheit wird.

    Deswegen leben Sie in der Waschmaschine – eine Kraft, die durch Naturgesetze gebunden ist, rennt, kämpft, fleht, windet sich und trickst, um zu entkommen. Die Naturgesetze geben ihr einen gewissen Spielraum vor, Welten zu bauen – solange sie die Waschmaschine erhalten, und damit auch die Naturgesetze durchsetzen. So bekommen Sie ein zittriges Fraktal, alles ist sich ähnlich, doch nichts völlig gleich. Und der Teufel versteckt sich im Detail, in den Nischen, wo er sich am freiesten entfalten, eigene, spontane, noch nie dagewesene Muster kreieren kann.

    Und wir sind mittendrin in der Hierarchie der Muster, wir können nur mit einiger Bestimmtheit sagen, dass unser Universum auch nur eine Blase unter vielen sein muss. Die Naturgesetze, die absoluten Wahrheiten hinter allen Wahrheiten, scheinen überall durch, aber sie müssen schon allein deshalb vage und unpräzise sein, um in unzähligen Varianten verwirklicht werden zu können. Sie sehen ja auch das Getränk in Kaffee und Kakao, aber es ist nur ein Aspekt von Kaffee und ein Aspekt von Kakao, und wenn Sie sich dem Getränk nähern, müssen Sie Kaffee und Kakao aufgeben, die individuellen Aspekte vergessen. Und umgekehrt, wenn Sie verstehen wollen, was Kaffee von Kakao unterscheidet, muss „Getränk“ zu einer Kategorie verblassen, einer von vielen Eigenschaften.

    So scheinen wir eher den umgekehrten Weg zu gehen – die Geometrie wird in die schwummrige, lebende, wechselhafte Welt der Philosophie geholt. Statt dass die Geometrie der Philosophie Präzision schenkt, schenkt die Philosophie der Geometrie Ambiguitätstoleranz.

    Freiheit ist die Peitsche, Ordnung ist die Kette, Frieden ist die Bühne, die ihnen Platz lässt, sich auszutoben, und einander zu entfliehen. Das olle Spiel, der olle Tanz von Teufel, Gott und Tod, Energie, Masse und Raumzeit, Chaos, Ordnung und das "Leckt mich am Arsch mit eurem Scheiß, ich will pennen" des Nichts. Mehr als diesen Tanz, den Himmel des Gleichgewichts zwischen ihnen und die Hölle ihrer Kriege, kann ich in der Welt an absoluten Triebkräften nicht finden. Der Rest dürfte blasenbezogen und relativ sein.
  • Türme von Hawaii - Regeln bewirken Aus nach nur zwei Zügen

    21.09.2024, Birgit Selhofer
    Sobald die ersten beiden Scheiben auf je einen der anfangs freien Stäbe gelegt wurden (und es ist völlig egal, welche Scheibe auf welchen Stab gelegt wurde), ist das Spiel schon aus, denn man darf weder eine größere Scheibe auf eine kleinere legen - die dritte ist bekanntlich größer als die erste und zweite - noch darf man vom mittleren oder rechten Stab die eine dort liegende Scheibe wegbewegen - man darf ja nur genau zwei bzw. genau drei Scheiben von jenen Stäben gemeinsam nehmen.
  • Auswahlaxiom, Paradoxon

    20.09.2024, Otto Markus
    Ohne das Auswahlaxiom "kann nur die Realität" arbeiten. Um etwas zu beschreiben, man braucht das Auswahlaxiom zum Modellieren.
    So verstehe ich gar nicht die Streitigkeit der Fachleuten.

    Die Axiomen das Extensionalitäts-, das Leerenmengen- und das Ersetzungsaxiom bilden gemeinsam das Auswahlaxiom, das überhaupt das Modellieren erlaubt.

    Führt das Auswahlaxiom zum Widerspruch oder zum Paradoxon, dann sollte man nicht das Auswahlaxiom schuldig machen, sondern sollte man untersuchen, was man nicht in Betracht gezogen hat. Oder was man falsch in Betracht gezogen hat.

    Volumen Verdoppelung einer Kugel: In der Mathematik ist sie ein Paradoxon, aber in der Evolution ist sie der mathematische Basis zur Zellteilung. Tumor ist leider Extrem Beispiel hierzu.

    Anschauliche Darstellung der Volumen Verdoppelung:
    Volumen einer Kugel kann nur verdoppelt werden, wenn das Fläche der Kugel verdoppelt wird. Also, die Kugel muss so zerlegt werden, dass man das doppelte Fläche erhält.
    Ich nehme hier eine Kugel mit Einheitsradius. Der Flächeninhalt=4×π.
    Ich halbiere die Kugel und trenne sie. Jede halbe Kugel hat den Flächeninhalt 3×π.
    Ich halbiere die halbe Kugel. So erhält man einen Flächeninhalt von 4×π. Das Fläche entspricht der Kugel. Ich forme das Fläche zur Kugel. Ich tue mit der anderen Hälfte das gleiche. Also, es würde das Volumen der Kugel verdoppelt.
    Die Zellen "arbeiten" mit Zwischenmembranen.

  • es sind...

    18.09.2024, T.
    (10 · 1 + 4 · 1/2 + 2 · 1/4)/(18 · 1 + 12 · 1/2 + 2 · 1/4) = 25/49 ≈ 51 Prozent
  • Wenn ich das Problem richtig verstehe, ist das Spiel schon nach 2 Zügen zu Ende.

    18.09.2024, Matthias
    Man kann eine Scheibe von dem linken Stab nehmen und auf einen der beiden anderen legen, dann die zweite Scheibe vom linken Stab auf den verbleibenden (die zweite Scheibe ist größer und muss zwingend auf den verbleibenden Stab). Danach sind keine Spielzüge mehr möglich. Vom linken Stab können nur noch größere Scheiben genommen werden, die nirgends abgelegt werden können (Auf beiden Stäben ist eine kleinere Scheibe, aber es gilt die Regel: „Dabei darf niemals eine größere Scheibe auf eine kleinere gelegt werden“). Auf dem mittleren und rechten Stab sind je nur eine Scheibe, welche man nicht wegnehmen kann, da in der Mitte 2 und rechts 3 Scheiben weggenommen werden müssen. Ergo, es ist kein Spielzug mehr möglich. Oder hab ich das falsch verstanden?
  • Ist dieses Problem lösbar? Meiner Meinung nach ja.

    18.09.2024, René Alexiewicz
    Vielleicht übersehe ich da etwas, aber ich habe das an und für sich so gelöst (13 Züge): 3 Türme (T1-T3) 5 Scheiben (S1-S5). S5 ist die größte.
    Zug 1 S1 (T1 auf T3); Zug 2 S2 (T1 auf T2); Zug 3 S1 auf S2 legen (also von T3 auf T2); Zug 4 S3 (T1 auf T3); Zug 5 S1/S2 auf S3 legen (also von T2 auf T3); Zug 6 S4 (T1 auf T2); Zug 7 S1/S2/S3 auf S4 legen (also von T3 auf T2); Zug 8 S5 (T1 auf T3); Zug 9 S1/S2 (T2 auf T1) [zur Veranschaulichung: T1: S1/S2 - T2: S3/S4 - T3: S5]; Zug 10 S3/S4 auf S5 legen (also von T2 auf T3); Zug 11 S1 (T1 auf T2); Zug 12 S2 (T1 auf T3); Zug 13 S1 (T2 auf T3). T3: S1/S2/S3/S4/S5 (wobei zuunterst S5 liegt).
    Sollte ich etwas übersehen haben, bitte korregieren.
  • Auch in Vorwärtsrechnung unlösbar

    17.09.2024, Dr. NO
    Das Rätsel ist auch ohne den dynamischen Programmierungsansatz (von hinten) durch eine vorausschauende Analyse als unlösbar zu erkennen.

    Im ersten Zug muss immer die kleinste Scheibe auf Stab Mitte oder Rechts bewegt werden. Egal welcher gewählt wird: Da auf die kleinste Scheibe keine andere gelegt werden darf und vom Zielstapel nur 2 oder 3 Scheiben bewegt werden dürfen, ist der Zielstapel nach dem ersten Zug nicht mehr verwendbar und die Scheibe liegt fest. Daher kann sie auch nie am Ende aufgestapelt werden. Folglich ist das Rätsel unlösbar.
  • zu den "Türmen von Hawaii"

    17.09.2024, Renato Rosco
    Wieso so kompliziert? Das kann man auch zeigen, ohne das Pferd von hinten aufzuzäumen.

    Grundlegendere Frage: gibt es keine Möglichkeit mehr, die Rätsel zu kommentieren und zu diskutieren? Oft gibt es weitere, elegantere Lösungen, die man gerne anmerken würde. Das ging früher, soweit ich weiss, sogar - aber aktuell scheint es nicht gewünscht?
  • Nachtrag zu den Türmen von Hanoi

    16.09.2024, Th. Lühmann
    Schade dass in dem Artikel nicht näher auf den exponentiellen Wachstum der Anzahl der Züge eingegangen wird und dargelegt wird, dass die Umschichtung der eingangs erwähnten 64 Scheiben doch ein "wenig" länger dauern würde. Viele haben eben keine Ahnung wie schnell diese Zahlen explodieren.
  • Antiken

    15.09.2024, Otto Markus
    Ein sehr belehren der Artikel. Es scheint, die Gelehrten damals viel mehr zu wissen als zu heute.
    Danke für den Artikel

  • Sehr schöner und vor allem sehr einfach verständlicher Artikel zum Auswahlaxiom

    15.09.2024, Hasan Gündogan
    Vielen Dank, Frau Bischoff, für diesen sehr schönen und vor allem sehr einfach verständlichen Artikel zum Auswahlaxiom (Axiom of Choice, AC). Ich finde das Beispiel von den runden Kuchen beim Bäcker, die in ununterscheidbare Stück geschnitten sind, sehr elegant, um das Dilemma der exakt zu definierenden Auswahlregel zu illustrieren. (Auch wenn es technisch gesehen nicht ganz stimmt: Das Problem des AC ist die Verzagtheit bei unendlichen Mengen.)
    Ich habe nur ein paar kleine Anmerkungen zum Artikel:

    1. Die Aussage "Aus diesem Grund hat sich das Auswahlaxiom in der »Mainstream-Mathematik« durchgesetzt." ist fast schon zu schwach. Das AC gilt in der modernen Mathematik. Viele Erkenntnisse der Mathematik und abgeleitete Errungenschaften der Naturwissenschaften würde es ohne das AC nicht geben. Man kann Mathematik ohne AC betreiben, aber es ist in etwa so, als ob man Biologie betreibt, ohne an die Evolutionstehorie zu glauben.

    2. Die Nicht-Messbarkeit der Vitali-Mengen ist keine Schwäche des AC, sondern die Schwäche der Vorstellung, \R^3 würde den real existierenden Raum eins-zu-eins modellieren. Beliebige Teilmengen (also Elemente der Potenzmenge) von \R^3 sind nicht mit unserer Vorstellung von Raum deckungsgleich, daher wirkt Banach-Tarski nur für uns Menschen paradox. In der Mathematik hilft man sich damit aus, dass man statt der Potenzmenge die Borelmenge von \R^3 anschaut, was sehr elegant und, auf den zweiten Blick, der intuitiven Vorstellung von Maß sehr viel näher kommt als die Potenzmenge.

    3. Der mit dem AC äquivalente Wohlordnungssatz ist nicht ganz so absurd, wie er im Artikel erscheint. Dass das offene Intervall (0;1) kein minimales Element bezüglich der allgemein bekannten Ordnung "<" hat, ist auch in der Mathematik mit AC bekannt. Der Wohlordnungssatz sagt nur aus, dass man eine andere Ordnung definieren *kann*, nach der auch (0;1) ein minimales Element hat. Zugegeben, die Tatsache, dass man so eine Ordnung noch nicht "gefunden" hat, spricht natürlich nicht für das AC.

    4. Die u. a. von der Annahme des AC abhängige Tatsache, dass jeder Vektorraum eine Basis hat, ist der Satz von Hamel, vom Dürener Mathematiker Georg Hamel. Der Satz von Hamel ist eines der wichtigsten Korollare des Lemmas von Zorn, vom Krefelder Mathematiker Max August Zorn. Zorn musste 1933 vor den Nazis in die USA fliehen und war dann unter anderem in Yale tätig.

    Schließlich möchte noch einmal für diesen brillianten Artikel danken.
  • Einfachere Erklärung möglich

    15.09.2024, Johannes Stähle
    Moin,

    Wenn die mittlere Zahl als a gewählt wird, dann ergibt sich daraus
    (a-1)*(a+1) für das Produkt der äußeren Zahlen. Durch Anwendung der dritten Binomischen Formel erhält man a^2 - 1^2 = a^2 - 1.

    Hiermit lässt sich dann auch zeigen, dass für die weiteren Nachbarn (a±2,3,…) entsprende Beziehungen gelten.
  • Anmerkung: Gilt diese Regel grundsätzlich?

    15.09.2024, Sebastian
    Hallo Herr Eder.

    Die Aussage gilt sogar für komplexe Zahlen. Gut sieht man das anhand der 3. binomischen Formel:

    (a – b) ∙ (a + b) = a² – b²
    mit
    b = 1

    Gruß, Sebastian
Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.