Direkt zum Inhalt

Kommentare - - Seite 21

Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
  • alternativer Lösungsweg

    08.02.2024, Martin Q.
    Die Dreiecke BDE und AFG sind ähnlich. Da AG die obere Kante des unteren mittleren Quadrats zur Hälfte teilt, ist das Größenverhältnis von BDE und AFG in jeder Richtung 1:6. AFG hat also den Flächeninhalt 1x6x6 = 36. Da die Fläche von AFG aber genau der Fläche der drei Quadrate entspricht, besitzt jedes der drei Quadrate die Fläche 12.
  • Das Dreieck ist ein halbes Rechteck...

    08.02.2024, oliver fiedler
    Und dieses Rechteck (Fläche = 2) passt mit den Seitenlängen (1/2 a und 1/3 a) offensichtlich 2 * 3 mal in jedes der Quadrate...

  • Surreale Zahlen

    06.02.2024, Peter Kohler
    Von nix kommt nix (populärwissenschaftliches Argument gegen eine CREATIO EX NIHILO) Die Konstruktion der surrealen Zahlen aus leeren Zahlenmengen widerlegt dieses Argument.
    Schade, dass diese phiosophische/theologische Folgerung in dem Artikel nicht erwähnt wird.
  • spät oder früh?

    12.12.2023, Eva Baumgartner
    Vielleicht steh ich ja völlig auf der Leitung:
    "Wenn man Entfernung und Geschwindigkeit von Galaxien bestimmt, werden Informationen genutzt, die aus dem späten Universum stammen. Bei der Messung der Hintergrundstrahlung liegen hingegen Daten aus dem frühen Universum vor.
    Im ersten Fall erhält man einen Wert für die Hubble-Konstante, der bei zirka 73 Kilometer pro Sekunde pro Megaparsec liegt; im zweiten Fall ergibt der Wert ungefähr 67 Kilometer pro Sekunde pro Megaparsec.
    ...
    Die Daten aus dem späten Universum liefern konsistent niedrigere Werte für H0 als die aus dem frühen Universum."

    Ist der zweite Absatz nicht genau das Gegenteil vom ersten (spätes Universum 73, frühes 67)?
  • Da hat jemand nicht aufgepasst.

    28.11.2023, Gerd Dirk
    100 Minuten mal 10 Stunden ergeben 1000 Minuten. 24 Stunden zu je 60 Minuten jedoch 1440 Minuten. Die Minute müsste also 86,4 Sekunden haben statt 60. Und daran zeigt sich das Dezimal nicht immer automatisch bedeutet das es mit der Natur übereinstimmt... Es ist nur leicht zu erlernen wo es passt.
  • Plausible Überlegung zur Beibehaltung des Sexagesimalsystems - zu "Manchmal sind Gefühle wichtiger als Logik"

    27.11.2023, Ekkehard Augustin
    Da das Sexagesimalsystem seit seiner Einführung in unübersehbar vielen Bereichen des praktischen Lebens aller inzwischen 8 Mrd. Menschen auf unserem Planeten eine wesentliche Rolle spielt, wäre seine Ablösung durch ein dezimales oder anderes System mit einem extrem hohen Aufwand verbunden.

    Die Aufwände zur Umstellung der IT und Rechner aller Art auf das Jahr 2000 waren bereits exorbitant hoch - und es ging lediglich um zwei Ziffern für das Jahrhundert.

    Und die Aufwände betrafen nur die Rechner und die Software.

    Die Zahl der Rechner und der Software-Anwendungen ist jedoch deutlich geringer als das Produkt aus 8 Mrd. Menschen und deren analoge Anwendung des Sexagesimalsystems im täglichen Leben.

    Das ist ein Indiz dafür, daß eine Umstellung der Praxis in aller Welt auf das Sexagesimalsystems vermutlich mit einem bei Weitem nicht leistabren Aufwand verbunden wäre.

    Dafür hat man ein Bewußtsein - und lehnt solche Umstellungen intuitiv ab.
  • Mittlere Wartezeit 5,5 Minuten?

    03.10.2023, Dmitrij Hellmann
    Guten Tag,

    Nach dem Lesen des Artikels zum Inspektionsparadoxon, den ich sehr spannend fand, frage ich mich, ob die mittlere Wartezeit auf einen Bus, der alle 10 Minuten fährt nicht korrekterweise 5 Minuten sein sollte. Meines Erachtens fehlt in der vorgerechneten Statistik der Fall, bei dem man zur Haltestelle kommt und 0 Min, also quasi nicht wartet. Dann teilt man die 55 Minuten durch 11 Beobachtungen anstatt durch 10. 5,5 Minuten beantwortet aus meiner Sicht eher die Frage "Wenn ich alle Menschen, die auf den Bus warten mussten, frage wie lange sie gewartet haben, was ist der Durchschnitt?". Um die Frage geht es meiner Ansicht nach aber nicht.

    Mit freundlichen Grüßen
    Dmitrij Hellmann
  • Schöner Beitrag

    03.10.2023, Sebastian
    Danke schön für diesen schönen Beitrag über die Äpfel und Birnen in der Mathematik. Sehr oft unterschätzt man seine eigene Subjektivität beim Bewerten von Daten und Zahlen.

    Mit freundlichen Grüßen
    20 Bauarbeiter um ein 1qm Loch
  • So kann man sich alles schön reden

    03.10.2023, Martin
    Jetzt werden sogar schon Modelle aus der höheren Mathematik verwendet, um sich Verspätungen schön zu reden. Dabei ist die Grundanahme dieses Artikels fundamental falsch: der Öpnv ist kein quantenmechanisches System das Zufällen gehorcht, sondern streng deterministisch. Die Straßenbahn in Frankfurt kommt nicht zufällig verteilt an, sondern Verkehrsplaner des RMV legen Fahrpläne fest. Und Fahrgäste treffen nicht stochastisch verteilt an Bahnsteigen ein, sondern die allermeisten Fahrgäste informieren sich im Internet wann der Zug kommen soll und gehen kurz davor zum Bahnsteig. Warum die meisten länger warten ist dann extrem einfach (und man braucht nur einfachste Prozentrechnung): 40% (laut Bahn Angaben, 6 minuten Verspätung werden da nicht einmal eingerechnet) sind zu spät, also müssen 40% der Fahrgäste länger warten. Mit dem Inspektionsparadoxon hat dies alles nichts zu tun, schließlich müssen Fahrgäste in anderen Ländern wie der Schweiz trotz Inspektionsparadoxon nicht länger als erwartet warten.
  • rechenfehler

    02.10.2023, Martin
    Hallo Frau Bischoff,
    erstmal vielen Dank für diese Reihe!
    Ich glaube da ist ein Tippfehler:
    "100·(10 + 9 + … + 2 + 1)/100 = 5,5 Minuten"
    ...es müsste vermutlich "10*(..." sein? (oben bei den 100 Personen die zum Bahnsteig gehen). Da es ja 10 Intervalle sind, mit je 10, 9, ... Minuten Wartezeit.
    viele grüße
    mb
  • Warum kommt die Bahn in ungleichen Zeitabständen vorbei?

    02.10.2023, gernot gwehenberger
    Warum die Bahn immer zu spät kommt. Der Artikel erklärt zwar, warum dieses Gefühl entsteht, aber nicht die ungleichen Zeitabstände. Bei einem Busbetrieb könnte das folgenden Grund haben. Je länger die Abchnitte zwischen den Ankünften sind, desto mehr Passagiere steigen ein und desto grösser werden die Abschnitte. Das schaukelt sich dann auf, wenn z.B. bereits bei der ersten Station überdurchschnittlich viele Leute einsteigen. Aber wenn bei einer Bahn genug Zeit eingeplant ist, dann sollte dieses Phänomen keine Rolle spielen. Also was ist der Grund für die ungleichen Abstände?

  • Warum sind in der Schweiz ÖV-Verkehrseinheiten zu 98% punktlich ?

    02.10.2023, Paul Till Eisenbach
    Warum sind in der Schweiz ÖV-Verkehrseinheiten zu 98% punktlich ? Ignorieren die ihren Beitrag.? Ich lebe 15 Jahre in der Schweiz und fand die Punktlichkeit enormous und wenn dem mal nicht so war wurden die Wartenden innerhalb 3-4 Minuten zu dem betriebsbdingten Verzug/Ausfall und Grund informiert. Was sich die deutschen Betreiber zum Vorbild nehmen könnten. Also Mathematica ist keine Entschuldigung.
  • Inspektionsparadoxon: durchschnittliche Wartezeit

    01.10.2023, Stefan Albertz
    Hallo,

    Die Bestimmung der durchschnittlichen Wartezeiten durch Bildung des arithmetischen Mittels der (durchgehend aufgerundeten!!) Wartezeiten in Minuten scheint mir nicht korrekt. Bei einem pünklichen Takt von 10 Minuten gibt es ja ein _Kontinnuum_ möglicher Wartezeiten aus dem Intervall [0, 10[. Und auf dem Zahlenstrahl liegt 5 genau in der Mitte zwischen 0 und 10 - und ist somit auch der Mittelwert.

    Das wird auch deutlich, wenn man die Rechnung der Autorin genauer - mit Sekunden - durchführt, und alle natürlichen Zahlen zwischen 1 und 600 addiert. Das gibt (nach Gauß' Methode) 601 x 300 = 180300, und das arithmetische Mittel ist 180300 : 600 = 300,5.

    Lediglich durch eine Verfeinerung des Rasters betrüge die durchschnittliche Wartezeit dann plötzlich 5 Minuten und eine halbe Sekunde. Und mit immer höherer Granularität konvergiert das Verfahren dann offensichtlich gegen 5.

    Mit besten Grüßen,
    Stefan Albertz

  • Unpräzise Formulierung des Satzes von Pick

    29.09.2023, Wolfgang Meyer
    "Man zählt alle Gitterpunkte innerhalb des Vielecks (I), addiert die Hälfte aller Gitterpunkte (B), die dessen Rand kreuzen, und zieht eins davon ab: A = I + B/2 − 1"
    Bei dieser Formulierung dreht sich mir der Magen um und es kommen mir Zweifel ob ich richtig versyanden habe.
    Ich habe noch nie gehört, dass ein Punkt (hier Gitterpunkt) einen Rand (gemeint ist hier wohl die Randlinie des Vielecks) kreuzt.
    Zwei Linien können sich kreuzen, weswegen ich erstmal versuche statt eines Gitterpunkts eine Gitterlinie mit dem Rand zu kreuzen, was aber zu Zweifeln führt ob jetzt horizontal oder vertikale gemeint sein sollten?
    Warum schreibt man nicht einfach klar und deutlich 》... addiert die Hälfte aller Gitterpunkte (B), die auf dessen Rand liegen, und ...《
    Wobei - und dies liegt nun aber nicht am Satz von Pick - es doch bei einigen Vielecken sehr auf die Zeichen- und Ablese-(un)genauigkeit des Ausführenden ankommt, zu erkennen ob ein Gitterpunkt zum Rand oder zum Inneren des Vielecks zu zählen ist?
  • Kleiner Fehler bei der pq-Formel

    15.09.2023, Thomas Klingbeil
    Bei der Anwendung der pq-Formel hat sich ein Fehler eingeschlichen.
    Der goldene Schnitt entspricht (1+√5)/2, und nicht ½(1 + ½√5).
Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.