Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
Es gibt einen anderen Weg, die Lösung zu bestimmen: Nennen wir den Mittelpunkt des gelben Kreises (Radius r) M, den Mittelpunkt, der zum oberen kleinen (Halb)Kreis gehört, Ma und den Mittelpunkt, der zum unteren großen (Halb)Kreis gehört, Mb. Ferner ist MC = MB = r. Mit Bestimmung der Länge MMa hätte man direkt eine Beziehung zwischen a, MMa und r, da r^2 = MMa^2 + a^2. Außerdem ist auch r^2 = MMb^2 + b^2. Daher ist MMa^2 + a^2 = MMb^2 + b^2, was trivialerweise erfüllt ist, wenn MMa = b und MMb = a ist. Dieses lässt sich aber auch aus der Beziehung MMa + MMb = a + b ableiten. Stellt man dieses nach MMb um und setzt es ist in MMa^2 + a^2 = MMb^2 + b^2 ein, erhält man MMa = b. Damit ist r^2 = b^2 + a^2 und man erhält wiederum, dass die beiden Halbkreise die Hälfte der Fläche des gelben Kreises ausmachen.
Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.
Anmerkung zum Rätsel "Wie groß ist Gesamtfläche der beiden Halbkreise?"
31.01.2022, Martin QuedzuweitDaher ist MMa^2 + a^2 = MMb^2 + b^2, was trivialerweise erfüllt ist, wenn MMa = b und MMb = a ist. Dieses lässt sich aber auch aus der Beziehung MMa + MMb = a + b ableiten. Stellt man dieses nach MMb um und setzt es ist in MMa^2 + a^2 = MMb^2 + b^2 ein, erhält man MMa = b.
Damit ist r^2 = b^2 + a^2 und man erhält wiederum, dass die beiden Halbkreise die Hälfte der Fläche des gelben Kreises ausmachen.