Direkt zum Inhalt

Kommentare - - Seite 1

Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
  • Drei fehlende Ziffern in 20!

    22.06.2022, Kuchen
    20! = 2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20.
    Dabei ist 5*10*20 = 1.000 und 14*15 = 7*3*10. Daher ist 20! durch 10.000 teilbar, d.h. C=0. D ergibt sich als Einer des verbleibenden Produkts
    2*3*4*6*7*8*9*11*12*13*7*3*16*17*18*19.
    Dabei muss bei jedem Zwischenschritt nur mit den Einern gerechnet werden (i.e. mod 10), d.h. (2*3*4)*(6*7)*(8*9)*(1*2*3*7)*(3*6)*(7*8)*9 mod 10 = (4*2*2)*(2*8)*(6*9) mod 10 = 6*6*4 mod 10 = 4 mod 10. Also D=4. A ergibt sich wie zuvor: Die durch 9 teilbare Quersumme von 20! beträgt 52+A. Da 54 Vielfaches von 9 ist, muss A=2 sein.
Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.