Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
Sehr geehrte Damen und Herren! Ich denke, das Zugrätsel ist nicht korrekt. Die Angabe ist nicht eindeutig und lässt auch die Interpretation zu, dass nur die Summe der Fahrgäste in den Waggons a + b + c = 99 und d + e + f = 99 usw. Die Lösung zeigt, dass die Angabe aber so gemeint ist, dass jeder Gruppe aus drei aufeinander folgenden Waggons in Summe 99 Fahrgäste enthält. Also gilt: a + b + c = 99 und b + c + d = 99 und c + d + e = 99 usw. (Sonst dürfte für die Lösung ja nicht vorausgesetzt werden, dass W9 + W10 + W11 auch 99 Personen in Summe beinhalten). Wenn das gilt, dann beinhaltet aber W4 (in meiner Schreibweise oben also "d") gleich viele Personen wie Waggon a, denn es gilt: a + b + c = 99 und b + c + d = 99. Egal, wieviele Leute in a, b und c jeweils sitzen, für die zweite Dreiergruppe (b + c + d) bleibt - weil b und c ja gleich bleiben - für d nur die Anzahl, die in der ersten Dreiergruppe a entspricht. Und so weiter: Die zweite Dreiergruppe (b, c, d) ist also gleich wie b, c, a und die dritte (c, d, e) gleich wie c, a, b usw. Alle Dreiergruppen bestehen somit aus a,b,c. Da sich dies bis zum Ende fortsetzt, zeigt sich, dass die Angabe so nicht gemeint sein kann, weil sonst nur 363 Leute im Zug sitzen würden. Wenn man aber die Angabe so versteht, dass nur die drei Dreiergruppen a,b,c und d,e,f und g,h,i jeweils 99 Leute beinhalten, darf man für die Lösung nicht auf einmal darauf abstellen, dass 9,10 und 11, bei mir also i + j + k auch eine 99er Dreiergruppe bilden. Lässt man diese Annahme weg, so gibt es aber auch keine eindeutige Lösung mehr. Liebe Grüße Stefan Strahwald
Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.
Fehler im Zugrätsel
26.11.2022, Stefan StrahwaldIch denke, das Zugrätsel ist nicht korrekt. Die Angabe ist nicht eindeutig und lässt auch die Interpretation zu, dass nur die Summe der Fahrgäste in den Waggons a + b + c = 99 und d + e + f = 99 usw. Die Lösung zeigt, dass die Angabe aber so gemeint ist, dass jeder Gruppe aus drei aufeinander folgenden Waggons in Summe 99 Fahrgäste enthält. Also gilt: a + b + c = 99 und b + c + d = 99 und c + d + e = 99 usw. (Sonst dürfte für die Lösung ja nicht vorausgesetzt werden, dass W9 + W10 + W11 auch 99 Personen in Summe beinhalten). Wenn das gilt, dann beinhaltet aber W4 (in meiner Schreibweise oben also "d") gleich viele Personen wie Waggon a, denn es gilt: a + b + c = 99 und b + c + d = 99. Egal, wieviele Leute in a, b und c jeweils sitzen, für die zweite Dreiergruppe (b + c + d) bleibt - weil b und c ja gleich bleiben - für d nur die Anzahl, die in der ersten Dreiergruppe a entspricht. Und so weiter: Die zweite Dreiergruppe (b, c, d) ist also gleich wie b, c, a und die dritte (c, d, e) gleich wie c, a, b usw. Alle Dreiergruppen bestehen somit aus a,b,c. Da sich dies bis zum Ende fortsetzt, zeigt sich, dass die Angabe so nicht gemeint sein kann, weil sonst nur 363 Leute im Zug sitzen würden. Wenn man aber die Angabe so versteht, dass nur die drei Dreiergruppen a,b,c und d,e,f und g,h,i jeweils 99 Leute beinhalten, darf man für die Lösung nicht auf einmal darauf abstellen, dass 9,10 und 11, bei mir also i + j + k auch eine 99er Dreiergruppe bilden. Lässt man diese Annahme weg, so gibt es aber auch keine eindeutige Lösung mehr.
Liebe Grüße
Stefan Strahwald