Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
Die Aufgabe führt auf die quadratische Gleichung a^2 - 17a + 60 = 0. In der üblichen Notation von Polynomen lautet sie im Allgemeinen (mit x statt a)
x^2 + p x + q = 0 (*)
wobei p = -17 und q = 60 zu verwenden ist. Zur Lösung der o.g. (Polynom-) Gleichung gibt es zwei Möglichkeiten, nämlich 1) Lösungen probieren oder 2) Lösungen berechnen. Da p und q ganze Zahlen sind und vermutet werden kann, dass die Lösung ebenfalls eine ganze Zahl ist, dürfte Probieren am einfachsten sein. Zur Berechnung gibt es die Mitternachtsformel, die man ohne Umschweife anwenden kann, aber man muss mit Brüchen und Wurzeln hantieren. Die Mitternachtsformel ergibt sich aus Gleichung (*) durch quadratisches Ergänzen.
1) Probieren Etwas plump wäre es, in (*) nacheinander die Zahlen 1, 2, 3 usw. einzusetzen um zu prüfen, ob die Gleichung erfüllt ist. Bei 5 ist das der Fall, da 25 - 5*17 + 60 nämlich 0 ergibt. Und bei 12 ist es genauso.
Ein im Allgemeinen besseres Verfahren liefert folgende Überlegung: Die Gleichung lässt sich umschreiben zu q = -x (x + p). Sind x, p und q ganze Zahlen, dann ist x ein Teiler der rechten Seite. Da sie gleich q ist, ist x also Teiler von q. Man muss demnach im konkreten Fall die Teiler von q = 60 betrachten. Diese ergeben sich aus 60 = 1*60 = 2*30 = 3*10 = 4*15 = 5*12 = 6*10. Die richtigen Zahlen 5 und 12 sind dabei. Probiert man die Teiler der Größe nach durch, so probiert man unnötigerweise nach der 5 noch 6 und 10, bevor man mit der 12 den zweiten Treffer landet. Mit dem folgenden Verfahren passiert das nicht.
Gleichung (*) lässt sich anders umschreiben: Gesucht sind Lösungen x1 und x2 mit x^2 + p x + q = (x - x1) (x - x2). Multipliziert man die rechte Seite aus, ergibt sich x^2 - (x1 + x2)x + x1 x2. Durch Vergleich mit der linken Seite folgt (Satz von Vieta) -p = x1 + x2 und q = x1 x2. Im konkreten Fall heißt das 17 = x1 + x2 und 60 = x1 x2. Wie zuvor betrachtet man die Produkte, die 60 ergeben. Nach Vieta sollte die Summe der Faktoren 17 sein. Das ist just bei 60 = 5*12 der Fall, denn 5 + 12 = 17. Daher hat man x1 = 5 und x2 = 17 (oder umgekehrt) bzw. die Gleichung x^2 - 17x + 60 = (x - 5) (x - 12) = 0.
2) Berechnen Beim quadratischen Ergänzen suchen wir ein r so, dass x^2 - 17x + r^2 = (x -r)^2. Nach Ausmultiplizieren der rechten Seite (binomische Formel) und Zusammenfassen der Terme beider Seiten (wobei x^2 und r^2 entfallen) erhält man -17x = -2x r. Diese Gleichung ist für r = 17/2 erfüllt (wie eine formale Division durch -2x ergibt). Wir erhalten:
Quadratische Gleichungen lösen
21.04.2023, Kuchenx^2 + p x + q = 0 (*)
wobei p = -17 und q = 60 zu verwenden ist. Zur Lösung der o.g. (Polynom-) Gleichung gibt es zwei Möglichkeiten, nämlich 1) Lösungen probieren oder 2) Lösungen berechnen. Da p und q ganze Zahlen sind und vermutet werden kann, dass die Lösung ebenfalls eine ganze Zahl ist, dürfte Probieren am einfachsten sein. Zur Berechnung gibt es die Mitternachtsformel, die man ohne Umschweife anwenden kann, aber man muss mit Brüchen und Wurzeln hantieren. Die Mitternachtsformel ergibt sich aus Gleichung (*) durch quadratisches Ergänzen.
1) Probieren
Etwas plump wäre es, in (*) nacheinander die Zahlen 1, 2, 3 usw. einzusetzen um zu prüfen, ob die Gleichung erfüllt ist. Bei 5 ist das der Fall, da 25 - 5*17 + 60 nämlich 0 ergibt. Und bei 12 ist es genauso.
Ein im Allgemeinen besseres Verfahren liefert folgende Überlegung: Die Gleichung lässt sich umschreiben zu q = -x (x + p). Sind x, p und q ganze Zahlen, dann ist x ein Teiler der rechten Seite. Da sie gleich q ist, ist x also Teiler von q. Man muss demnach im konkreten Fall die Teiler von q = 60 betrachten. Diese ergeben sich aus 60 = 1*60 = 2*30 = 3*10 = 4*15 = 5*12 = 6*10. Die richtigen Zahlen 5 und 12 sind dabei. Probiert man die Teiler der Größe nach durch, so probiert man unnötigerweise nach der 5 noch 6 und 10, bevor man mit der 12 den zweiten Treffer landet. Mit dem folgenden Verfahren passiert das nicht.
Gleichung (*) lässt sich anders umschreiben: Gesucht sind Lösungen x1 und x2 mit x^2 + p x + q = (x - x1) (x - x2). Multipliziert man die rechte Seite aus, ergibt sich x^2 - (x1 + x2)x + x1 x2. Durch Vergleich mit der linken Seite folgt (Satz von Vieta) -p = x1 + x2 und q = x1 x2. Im konkreten Fall heißt das 17 = x1 + x2 und 60 = x1 x2. Wie zuvor betrachtet man die Produkte, die 60 ergeben. Nach Vieta sollte die Summe der Faktoren 17 sein. Das ist just bei 60 = 5*12 der Fall, denn 5 + 12 = 17. Daher hat man x1 = 5 und x2 = 17 (oder umgekehrt) bzw. die Gleichung x^2 - 17x + 60 = (x - 5) (x - 12) = 0.
2) Berechnen
Beim quadratischen Ergänzen suchen wir ein r so, dass x^2 - 17x + r^2 = (x -r)^2. Nach Ausmultiplizieren der rechten Seite (binomische Formel) und Zusammenfassen der Terme beider Seiten (wobei x^2 und r^2 entfallen) erhält man -17x = -2x r. Diese Gleichung ist für r = 17/2 erfüllt (wie eine formale Division durch -2x ergibt). Wir erhalten:
0 = x^2 - 17x + 60 = x^2 - 17x + r^2 + 60 - r^2 = (x - r)^2 + 60 - r^2
Die Gleichung kann nun nach x aufgelöst
x1/2 = r +/- sqrt( r^2 - 60 )
und r = 17/2 eingesetzt werden (sqrt() ist die Quadratwurzelfunktion):
x1 = 17/2 + sqrt( (17/2)^2 - 60 ) und x2 = 17/2 - sqrt( (17/2)^2 - 60 )
Wird das Vorgehen auf Gleichung (*) angewendet, erhält man die Mitternachtsformel:
x1/2 = -p/2 +/- sqrt ( (p/2)^2 - q )
Im konkreten Fall ist p = -17 und q = 60 (s.o.). Man erhält erwartungsgemäß:
x1 = 17/2 + 7/2 = 12 und x2 = 17/2 - 7/2 = 5. Dabei rechnet man unter der Wurzel so:
(17/2)^2 - 60 = 17^2/4 - 60 = (17^2 - 4*60)/4 = (289 - 240)/4 = (7/2)^2