Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
Die Aufgabe lässt sich auch in zwei Schritten formal lösen. Wichtig, die Aussage zur Ähnlichkeit der Quadrate bedeutet, dass alle farbigen wie auch das gesamte Rechteck das gleiche Seitenverhältnis m>1 haben.
Das kleine gelbe Rechteck oben rechts habe eine kurze Seite der Länge s. Seine lange Seite ist dann m*s. Die drei kleinen roten Rechtecke haben eine lange Seite der Länge s, somit eine kurze Seite der Länge s/m. Das gesamte Rechteck hat daher eine lange Seite der Länge 3(s/m+m*s) = 3s(1+m^2)/m. Die lange Seite des großen roten Rechtecks ist m^2*s, da seine kurze Seite m*s lang ist. Folglich ist die kurze Seite des gesamten Rechtecks s(1+m^2) lang. Da das Seitenverhältnis m sein soll, folgt m = 3/m, also m^2 = 3.
Die Gesamtfläche ist 3 s^2 (1+m^2)^2 / m. Die rote Fläche wiederum bemisst sich auf 3 s^2 / m + m^3 s^2 = s^2 (3+m^4) / m. Das Flächenverhältnis lautet daher (3+m^4)/3/(1+m^2)^2 = 12/3/16=1/4.
Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.
An der Lösung zu den roten Rechtecken gibt es nichts auszusetzen
26.04.2023, KuchenDas kleine gelbe Rechteck oben rechts habe eine kurze Seite der Länge s. Seine lange Seite ist dann m*s. Die drei kleinen roten Rechtecke haben eine lange Seite der Länge s, somit eine kurze Seite der Länge s/m. Das gesamte Rechteck hat daher eine lange Seite der Länge 3(s/m+m*s) = 3s(1+m^2)/m. Die lange Seite des großen roten Rechtecks ist m^2*s, da seine kurze Seite m*s lang ist. Folglich ist die kurze Seite des gesamten Rechtecks s(1+m^2) lang. Da das Seitenverhältnis m sein soll, folgt m = 3/m, also m^2 = 3.
Die Gesamtfläche ist 3 s^2 (1+m^2)^2 / m. Die rote Fläche wiederum bemisst sich auf 3 s^2 / m + m^3 s^2 = s^2 (3+m^4) / m. Das Flächenverhältnis lautet daher (3+m^4)/3/(1+m^2)^2 = 12/3/16=1/4.