Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
Der Beweis zeigt, ist 1+x ein Quadrat, dann ist auch x^2 * (1+x) ein Quadrat. Die unbeantwortete Frage ist, ob dies auch ein Quadrat sein kann, wenn 1+x es nicht ist. M.E. kommt man hier um den Fundamentalsatz der Algebra, dass es eine eindeutige Primfaktorzerlegung gibt, nicht herum. Damit lässt sich schließen, dass eine Zahl größer 1 genau dann ein Quadrat ist, wenn jeder Primfaktor der Zahl einen geraden Exponenten hat. Angewendet auf die Gleichung x^2 * (1+x) = a^2 folgt, dass die Primfaktoren von 1+x alle einen geraden Exponent haben müssen, und somit 1+x eine Quadratzahl ist. Somit ist sichergestellt, dass die genannten Möglichkeiten auch alle sind.
Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.
der Beweis ist nicht vollständig
07.05.2023, Kuchen