Ihre Beiträge sind uns willkommen! Schreiben Sie uns Ihre Fragen und Anregungen, Ihre Kritik oder Zustimmung. Wir veröffentlichen hier laufend Ihre aktuellen Zuschriften.
Meines Erachtens gibt es eine triviale Lösung für eine Anzahl von 4n Münzen: Man platziere 2n Münzen in jeder Wagschale. Eine davon wird sich heben, eine wird sich senken. Nun nehme man die Münzen in der schwereren Wagschale und wäge sie gegeneinander. Ist die Waage im Gleichgewicht, sind die jetzt gewogenen Münzen echt und die falsche war leichter. Ist die Waage nicht im Gleichgewicht, war die falsche Münze schwerer. Für die Fälle 4n+1, 4n+2 und 4n+3 (n > 0) gilt: Ist die Waage beim Wägen von 2x2n zufällig ausgewählten Münzen nicht im Gleichgewicht, fahre fort wie im Fall von 4n; die übrigen sind echt. Ist sie im Gleichgewicht, sind die 4n Münzen echt und man wäge 1/2/3 davon gegen die übrigen.
Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.
einfachere Lösung?
02.04.2024, Robert