Freistetters Formelwelt: Mercators Magie
Landkarten sind eine wunderbare Sache. In meinem Arbeitszimmer hängen gleich drei davon: eine große Deutschlandkarte, eine von meiner Heimatstadt Jena und eine der europäischen Fernradwege. Sie dienen eigentlich keinem konkreten Zweck; wenn ich im Detail wissen will, wo sich ein bestimmter Ort befindet, dann nutze ich, wie die meisten, das Kartenmaterial im Internet. Aber ich finde es einfach angenehm, die Karten dort hängen zu haben. Immer wieder mal fällt mein Blick darauf, und ich fange gedanklich an, Reisen zu planen.
Aber bei der Betrachtung von Landkarten muss man vorsichtig sein. Und darf nicht die Mathematik vergessen, die bei ihrer Erstellung benutzt wurde. Denn Landkarten haben alle ein Problem, das mit der Form unseres Planeten zu tun hat. Die Erde ist (vereinfacht gesagt) eine Kugel mit gekrümmter Oberfläche, eine Landkarte dagegen eine flache Ebene; und das eine lässt sich nicht ohne Probleme mit dem anderen verbinden.
Die klassische Weltkarte, die wir alle aus unserem Schulatlas kennen, basiert auf diesen mathematischen Formeln:
Hier wird die so genannte Mercator-Projektion beschrieben, entwickelt von Gerhard Mercator aus Flandern im Jahr 1569. x und y sind dabei die Koordinaten eines Orts auf der flachen Landkarte, λ und φ die geografische Länge und Breite auf der Erdkugel. Für die x-Koordinate ist die Umrechnung noch relativ einfach. Man wählt einen Nullmeridian λ0 und bestimmt die Differenz zum jeweiligen Längengrad. Bei der Umrechnung der geografischen Breite benötigt man aber schon sehr spezielle trigonometrische Funktionen, und der Zusammenhang zwischen der Breite auf der Erdkugel und der y-Koordinate auf der Landkarte ist nicht mehr linear.
Das führt zu Verzerrungen, wie mir als Kind schmerzlich bewusst gemacht wurde. Als ich 13 Jahre alt war, habe ich mit meinem jüngeren Bruder darüber diskutiert, welches Land flächenmäßig das größte Land der Erde ist (damals konnte man solche Informationen nicht einfach am Smartphone im Internet nachschlagen). Mein Bruder hielt Länder wie Russland, USA oder Kanada für die Spitzenreiter. Aber als besserwisserischer Teenager wollte ich besonders klug sein und erklärte, dass es nur Dänemark sein könne. Das ist zwar eigentlich klein, aber zu ihm gehört offiziell ja auch die Insel Grönland. Und die, das konnte ich auf meinen Weltkarten sehen, war riesig. Fast so groß wie Afrika oder Südamerika; größer als Australien und Dänemark damit das größte Land der Erde.
Die spätere Recherche meines Bruders in einer Enzyklopädie zeigte dann aber schnell meinen Irrtum. Mercators Projektion hat einen großen Vorteil: Zieht man auf einer solchen Landkarte eine gerade Linie, dann entspricht sie einer so genannten »Loxodrome«, einer Kurve auf der Erdoberfläche, die die Längengrade immer unter dem gleichen Winkel schneidet. Es ist eine Linie, entlang der die Richtung, die ein Kompass anzeigt, konstant ist. Diese Eigenschaft macht die Mercator-Projekt extrem nützlich für die Navigation, weswegen sie sich auch so schnell und weit verbreitet hat.
Die Karten sind jedoch weder richtungstreu noch flächentreu. Das heißt, dass die kürzeste Verbindung zwischen zwei Punkten auf der Erdoberfläche nicht durch eine gerade Linie auf der Karte dargestellt wird, und vor allem, dass Flächeninhalte an verschiedenen Stellen der Karte unterschiedliche Maßstäbe haben.
Länder weit entfernt vom Äquator werden bei einer typischen Mercator-Projektion viel größer dargestellt, als sie in Wirklichkeit sind. Deswegen erscheint Grönland so gewaltig, und deswegen haben Kartografen im Lauf der Zeit auch jede Menge andere Projektionsmethoden entwickelt. Perfekt kann allerdings keine davon sein; irgendwo kommt es bei der Übertragung von der Erdkugel zur Landkarte immer zu Verzerrungen. Dagegen hilft nur ein Globus – der in meinem Arbeitszimmer darum gleich neben den Landkarten steht.
Schreiben Sie uns!
1 Beitrag anzeigen