Direkt zum Inhalt

Lexikon der Astronomie: Unitarität

Unitaritätseigenschaft Unitarität, Spezialität und Orthogonalität sind bestimmte Eigenschaften von Transformationsmatrizen, oder allgemein gesprochen, von mathematischen Operatoren. Operatoren sind von besonderer Wichtigkeit für die Mathematik und Physik, vor allem in der Quantentheorie: Sie sind diejenigen mathematischen Objekte, die in Form von Operatorgleichungen (z.B. der Schrödingergleichung der Quantenmechanik) die Dynamik von Quantensystemen beschreiben.

unitäre Transformationen

Unitäre Transformationen können Gruppen oder Symmetriegruppen bilden. Deshalb behandelt man sie in der Gruppentheorie, die besonders relevant für die Teilchenphysik ist. Die (Matrizen-)Eigenschaften Unitarität, Orthogonalität und Spezialität dienen dann einer Klassifikation dieser Gruppen.
Unitarität ist eine wichtige Eigenschaft physikalischer Operatoren, weil anschaulich gesprochen eine unitäre Transformation die Physik nicht ändert. Deshalb ist z.B. der Hamilton-Operator, der die Energie-Zustände und -eigenwerte eines Quantensystems diktiert unitär. In der Quantenmechanik (QM) und den Quantenfeldtheorien (QFT) ist Unitarität eine Zeittranslationssymmetrie der Dynamik. Mit der Allgemeinen Relativitätstheorie muss der Zeitbegriff neu gedeutet werden. Hier ist die Aufrechterhaltung der Zeittranslationssymmetrie deutlich erschwert. Es besteht daher nicht notwendig die Forderung nach Unitarität einer Quantengravitation, beispielsweise der Loop-Quantengravitation (LQG).

Lesehinweis

Nähere Beschreibungen zu diesen Aspekten befinden sich unter dem Eintrag Symmetriegruppe.

  • Die Autoren
- Dr. Andreas Müller, München

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.