Direkt zum Inhalt

Lexikon der Mathematik: Carathéodory-Julia-Landau-Valiron, Satz von

lautet:

Ist f eine in ℍ = {z ∈ ℂ : Im z > 0} holomorphe Funktion mit f (ℍ) ⊂ ℍ, so gibt es eine Konstante α ≥ 0 mit folgender Eigenschaft: In jedem Winkelraum

\begin{eqnarray}{S}_{\varepsilon }:=\{r{e}^{i\varphi }:r\gt 0\quad und\quad\varepsilon \lt \varphi \lt \pi -\varepsilon \}\end{eqnarray}

mit \(0\lt \varepsilon \lt \frac{\pi }{2}\)konvergiert f(z)/z gleichmäßig gegen α für z → ∞.

Die Zahl α heißt Winkelderivierte von f an ∞.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.