Lexikon der Mathematik: Clairautsche Differentialgleichung
eine gewöhnliche Differentialgleichung erster Ordnung der Form
\begin{eqnarray}y(x)=x{y}^{\prime} (x)+g({y}^{\prime}(x)).\end{eqnarray}
wobei g : I → ℝ eine stetige Funktion auf einem Intervall I ⊂ℝ ist.Die Clairautsche Differentialgleichung ist ein Spezialfall der d’Alembertschen Differentialgleichung. Lösungen der Clairautschen Differentialgleichung sind die Geraden
\begin{eqnarray}{y}_{c}(x)=cx+g(c)\end{eqnarray}
für c ∈ I.Ist g auf I stetig differenzierbar mit streng monotoner Ableitung, so existiert auch die Enveloppenlösung (in Parameterdarstellung):
\begin{eqnarray}\begin{array}{ccc}x(t) & = & -\dot{g}(t)\\ y(t) & = & -t\dot{g}(t)+g(t)\quad(t\in I).\end{array}\end{eqnarray}
Man vergleiche auch Enveloppe einer Geradenschar.
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.