Direkt zum Inhalt

Lexikon der Mathematik: Darboux, Satz von, über die lokale Äquivalenz symplektischer Mannigfaltigkeiten

eine Reformulierung des Kontaktsatzes von Darboux, die wie folgt lautet:

Alle symplektischen Mannigfaltigkeiten gleicher Dimension sind lokal symplektomorph, d. h., es existiert ein Diffeomorphismus einer hinreichend kleinen Umgebung eines jeden Punktes einer symplektischen Mannigfaltigkeit auf eine Umgebung eines jeden Punktes einer anderen, gleichdimensionalen symplektischen Mannigfaltigkeit, der den vorgegebenen Punkt der ersten Umgebung in den vorgegebenen Punkt der zweiten Umgebung überführt und ebenso die symplektische Zweiform der ersten Umgebung in die symplektische Zweiform der zweiten Umgebung.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.