Lexikon der Mathematik: de Rhamsche Gruppe
wichtige Kohomologiegruppe in der Funktionentheorie.
Sei ε
Sequenz \(0\to \Gamma (X,{\mathbb{C}}\mathop{)\to }\limits^{\varepsilon}\Gamma (X,{\varepsilon}^{0})\mathop{\to }\limits^{d}\Gamma (X,{\varepsilon}^{1})\mathop{\to }\limits^{d}\cdots \end{eqnarray}
nennt man die de Rham-Sequenz. Die zugehörigen Kohomologiegruppen
\begin{eqnarray}{H}^{r}(X):=\frac{Ker(\Gamma (X,{\varepsilon}^{r})\mathop{\to }\limits^{d}\Gamma (X,{\varepsilon}^{r+1}))}{\mathrm{Im}(\Gamma (X,{\varepsilon}^{r-1})\mathop{\to }\limits^{d}\Gamma (X,{\varepsilon}^{r}))}\end{eqnarray}
nennt man die de Rhamschen Gruppen. Es gilt der folgende Satz von de Rham:\begin{eqnarray}{H}^{r}(X)\tilde{=}{H}^{r}(X;{\mathbb{C}})\ f{\ddot{u}}r\ r\ge 0.\end{eqnarray}
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.