Direkt zum Inhalt

Lexikon der Mathematik: diskrete Zufallsvariable

diskrete Zufallsgröße, Zufallsvariable, die nur endlich oder abzählbar unendlich viele Werte annehmen kann. Gelegentlich findet man auch die allgemeinere Definition, bei der eine auf dem Wahrscheinlichkeitsraum (Ω, \({\mathfrak{A}}\), P) definierte Zufallsvariable X mit Werten in \(({\mathbb{R}},\,{\mathfrak{B}}({\mathbb{R}}))\), wobei \({\mathfrak{B}}({\mathbb{R}})\) die σ-Algebra der Borelschen Teilmengen von ℝ bezeichnet, als diskret bezeichnet wird, wenn eine endliche oder abzählbar unendliche Menge \(B\in {\mathfrak{B}}({\mathbb{R}})\) mit P(XB) = 1 existiert.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.