Lexikon der Mathematik: dreimal stetig differenzierbare Kurve
eine stetig differenzierbare Kurve α(t) derart, daß neben α′(t) auch die Ableitungen α″(t) und α‴(t) existieren und stetig sind.
Den dreimal stetig differenzierbaren Kurven kommt eine besondere Bedeutung zu, da in der Differentialgeometrie Kurven im dreidimensionalen Raum ℝ3 im allgemeinen als dreimal stetig differenzierbar vorausgesetzt werden, um z. B. Begriffe wie Schmiegebene, begleitendes Dreibein, Krümmung und Windung definieren zu können.
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.