Lexikon der Mathematik: einfache Gruppe
Gruppe mit minimaler Anzahl von Normalteilern.
Eine Gruppe G mit Einselement e heißt einfach, wenn G und {e} die einzigen Normalteiler von G sind.
Die einfachen Gruppen spielen in der Gruppentheorie eine Rolle, die analog der der Primzahlen in der Zahlentheorie ist. Die endlichen einfachen Gruppen sind inzwischen klassifiziert, sie sind allerdings keinesfalls „einfach“ im anschaulichen Sinn: Eine von ihnen, teilweise „Monstergruppe“ genannt, hat etwa 1054 Elemente.
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.