Direkt zum Inhalt

Lexikon der Mathematik: Einheitswürfel

die Menge \begin{eqnarray}\{({x}_{1},\ldots, {x}_{n})\in {{\mathbb{R}}}^{n};0\le {x}_{i}\le 1\mathrm{f\ddot{u}r}\space i=1,\ldots, n\}\end{eqnarray} im ℝn, meist für n = 3 benutzt. In diesem Fall stellt die Menge auch anschaulich einen Würfel dar. In seltenen Fällen bezeichnet man auch, je nach Anwendung, die Menge \begin{eqnarray}\{({x}_{1},\ldots, {x}_{n})\in {{\mathbb{R}}}^{n};-1\le {x}_{i}\le 1\space\mathrm{f\ddot{u}r}\space i=1,\ldots, n\}\end{eqnarray} [−1, 1] als Einheitswürfel.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.