Direkt zum Inhalt

Lexikon der Mathematik: Geschlecht einer Kurve

eine positive ganze Zahl g, die für jede glatte eindimensionale algebraische Varietät X über einem Körper k als Dimension des Vektorraumes aller regulären Differentialformen erster Stufe von X definiert ist.

Das Geschlecht von X ist eine birationale Invariante, d. h., es stimmt für Flächen überein, wenn diese birational isomorph sind. Für jede ganze Zahl g > 0 existiert eine algebraische Kurve, deren Geschlecht den Wert g hat. Die algebraischen Kurven vom Geschlecht g = 0 über einem algebraisch abgeschlossenen Körper sind gerade die rationalen Kurven, d. h., die zur projektiven Geraden ℙ1 birational isomorphen Kurven. Kurven vom Geschlecht g = 1 sind die elliptischen Kurven, d. h, die Kurven, die zu einer glatten Kurve dritten Grades im ℙ3 birational isomorph sind.

Ist als Grundkörper k der Körper ℂ der komplexen Zahlen gegeben, so ist eine algebraische Kurve eine eindimensionale komplexe Mannigfaltigkeit. Als reelle Mannigfaltigkeit betrachtet hat sie die Dimension 2 und ist eine Riemannsche Fläche. In diesem Fall stimmt das Geschlecht der algebraischen Kurve mit dem topologischen Geschlecht der Fläche (Geschlecht einer Fläche) überein.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.