Lexikon der Mathematik: Gittergruppe
Transformationsgruppe eines Gitters.
Beipiel: In der euklidischen Ebene bilden diejenigen Punkte, deren Koordinaten beide ganzzahlige Werte haben, ein quadratisches Gitter. Die zugehörige Gittergruppe besteht aus all den Bewegungen der Ebene, die dieses Gitter in sich selbst überführen. Die Gittergruppe wird also aus folgenden vier Elementen erzeugt: Eine Drehung um den Ursprung um 90°, eine Translation in x-Richtung um den Betrag 1, eine Spiegelung an der Geraden x = y und eine Spiegelung an der y-Achse.
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.