Lexikon der Mathematik: Grothendieck-Ring
ein Ring stetiger komplexer Vektorbündel.
Sei M eine topologische Mannigfaltigkeit und F die freie abelsche Gruppe, erzeugt von den Isomorphieklassen komplexer Vektorbündel von endlichem Rang. Einer kurzen exakten Sequenz
Dieselbe Konstruktion ist auch für die Kategorie der differenzierbaren (analytischen oder algebraischen) Vektorbündel über einer differenzierbaren (analytischen bzw. algebraischen) Mannigfaltigkeit durchführbar. Für die Kategorie der kohärenten Garben über einer algebraischen Mannigfaltigkeit ist die analoge Konstruktion ebenfalls möglich. Allerdings sind hier in der Definition der Multiplikation noch höhere Torsionsobjekte zum Tensorprodukt hinzuzufügen.
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.