Direkt zum Inhalt

Lexikon der Mathematik: innere Topologie einer Lie-Untergruppe

eine der beiden im folgenden Sinne „möglichen“ Topologien auf einer Lie-Untergruppe.

Es seien G eine Lie-Gruppe und H eine Untergruppe von G, die ihrerseits wieder eine Lie-Gruppe ist. Dann gibt es in H zunächst zwei verschiedene Topologien: Die lokal euklidische Topologie von H, die aus ihrer Eigenschaft als Lie-Gruppe definiert wird, und zum anderen die innere Topologie von H, die aus ihrer Eigenschaft als Teilraum der als topologischer Raum aufgefaßten Gruppe G induziert wird. In vielen Fällen stimmen beide Topologien überein.

Beispiel: Die Lie-Gruppe U(1) ist die additive Gruppe der reellen Zahlen modulo 1. Sei G = U(1) × U(1). Die Untergruppe H werde durch das Element \(\begin{eqnarray}(\frac{1}{2},\lambda )\end{eqnarray}\) mit 0 < λ< 1 erzeugt. Dann stimmen die beiden genannten Topologien genau dann überein, wenn λ eine rationale Zahl ist.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.