Direkt zum Inhalt

Lexikon der Mathematik: Intervallmethode für Anfangswertprobleme

Verfahren zur genäherten Lösung von Anfangswertaufgaben mit gleichzeitiger Berechnung von Fehlerschranken mit Hilfe der Intervallrechnung. Solche Schranken können unter anderem durch Verwendung der Fehlerdifferentialgleichung, einer sogenannten Schrankeniteration oder durch Einschließung des lokalen Diskretisierungsfehlers eines „klassischen” Diskretisierungsverfahrens gewonnen werden.

Zu beachten ist in diesem Zusammenhang der sogenannte wrapping-Effekt, der zu einer unvermeidlichen Vergröberung der Fehlerschranken während der zeitlichen Integration führt, bedingt durch die achsenparallele Intervalleinschließung. Abhilfe schaffen hierbei mitgeführte Koordinatentransformationen.

[1] Bauch, H. et al.: Intervallmathematik. B.G. Teubner, Leipzig, 1987.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.