Direkt zum Inhalt

Lexikon der Mathematik: lokal-endliches Maß

ein Maß, das in der Umgebung eines jeden Punktes endlich ist.

Es sei Ω ein Hausdorffraum und \({\mathcal{A}}\supseteq {\mathcal{B}}({\rm{\Omega }})\) eine σ-Algebra auf Ω, die die Borel-σ-Algebra \({\mathcal{B}}({\rm{\Omega }})\) umfaßt.

Dann heißt ein Maß μ auf \({\mathcal{A}}\) lokal-endlich, wenn zu jedem x ∈ Ω eine offene Umgebung U von x existiert mit μ(U) < ∞.

Ein lokal-endliches Maß auf \({\mathcal{B}}({\rm{\Omega }})\) heißt bei manchen Autoren auch Borel-Maß.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.