Direkt zum Inhalt

Lexikon der Mathematik: Napier-Ungleichung

die Ungleichung

\begin{eqnarray}\frac{1}{b}\lt \frac{\mathrm{ln}b-\mathrm{ln}a}{b-a}\lt \frac{1}{a}\end{eqnarray}

für 0 < a< b. Man erhält sie etwa durch Anwenden des Mittelwertsatzes der Differentialrechnung auf die Logarithmusfunktion. Aus dieser Ungleichung folgt

\begin{eqnarray}\frac{1}{x+1}\lt \mathrm{ln}\quad(1+\frac{1}{x})\lt \frac{1}{x}\end{eqnarray}

für x > 0, woraus man den Wert von \((1+\frac{1}{x})\) mit einem Fehler von höchstens \(\frac{1}{{x}^{2}}\) erhält. 1614 hat John Napier (Neper) diese Ungleichungen bei der Erstellung seiner Logarithmentafeln benutzt.
  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.