Direkt zum Inhalt

Lexikon der Mathematik: Negatives einer surrealen Zahl

die zu einer sur- realen Zahl x ∈ No durch

\begin{eqnarray}-x:=\{-{x}^{R},-{x}^{L}\}\end{eqnarray}

erklärte surreale Zahl mit der Eigenschaft

\begin{eqnarray}x+(-x)=0,\end{eqnarray}

wenn die surrealen Zahlen No axiomatisch rekursiv als Conway-Schnitte x = {xL | xR} eingeführt werden.

Definiert man die surrealen Zahlen als spezielle Spiele, so erhält man die Negation der surrealen Zahlen aus der Negation von Spielen. Definiert man sie als Vorzeichenfolgen, so muß man für diese eine Negation erklären.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.