Direkt zum Inhalt

Lexikon der Mathematik: Schmiegebene

Ebene durch einen Punkt α(t) einer Raumkurve, die durch Antragen aller Vektoren der linearen Hülle des ersten und zweiten Ableitungsvektors α′(t) und α″(t) an den Kurvenpunkt entsteht.

Die Schmiegebene existiert nur, wenn α′(t) und α″(t) linear unabhängig sind. Sie ergibt sich als Grenzlage für h1 → 0 und h2 → 0 der durch drei nicht kollineare Punkte P0 = α(t), P1 = α(t + h1) und P2 = α(t + h2) der Kurve bestimmten Ebene, wobei h1 ≠ 0 ≠ h2 reelle Zahlen sind. Sie ist unter allen Ebenen, die den Tangentenvektor enthalten, diejenige, der sich die Kurve am innigsten anschmiegt.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.