Direkt zum Inhalt

Lexikon der Mathematik: schwach holomorph-konvexer Raum

Begriff in der Funktionentheorie auf Steinschen Räumen.

Ein komplexer Raum X heißt schwach holomorph konvex, wenn jede kompakte Menge KX eine offene Umgebung U besitzt, so daß \({\hat{K}}_{{\mathscr{O}}(X)}\cap U\) kompakt ist. Dabei bezeichne \({\hat{K}}_{{\mathscr{O}}(X)}\) die holomorph konvexe Hülle von K in X. Es ist leicht zu sehen, daß man U immer so wählen kann, daß U offen und relativ kompakt in X liegt, und \(\hat{K}\cap \partial U=\varnothing \).

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.