Direkt zum Inhalt

Lexikon der Mathematik: sehr amples Geradenbündel

Begriff in der Funktionentheorie mehrer Variabler.

Ein Geradenbündel LM über einer algebraischen Varietät heißt sehr ampel, wenn \({H}^{0}(M,{\mathcal{O}}(L))\) eine Einbettung \(M\to {{\mathbb{P}}}^{N}\) liefert, d. h., wenn eine Einbettung \(f:M\,\,{\unicode {x21AA}}\,{{\mathbb{P}}}^{N}\) existiert mit L = f*H für das Hyperebenenbündel H, das duale Bündel zu dem universellen Bündel \(J\to {{\mathbb{P}}}^{N}\).

Dies bedeutet, daß H das Bündel ist, dessen Faser über \(X\in {{\mathbb{P}}}^{N}\) dem Raum der linearen Funktionale auf der Geraden \({\{\lambda X\}}_{\lambda}\subset {{\mathbb{C}}}^{N+1}\) entspricht.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.