Direkt zum Inhalt

Lexikon der Mathematik: Steinhaus, Satz von

lautet:

Es sei \(\sum^{\infty}_{n=0}{a}_{n}{z}^{n}\)eine Potenzreihe mit Konvergenzradius 1. Weiter sei (ψn) eine Folge unabhängiger Zufallsgrößen, die im Intervall [0, 2π] gleichverteilt sind.

Dann hat die Potenzreihe \(\sum^{\infty}_{n=0}{a}_{n}{e}^{i{\varphi}_{n}}{z}^{n}\)mit Wahrscheinlichkeit 1 die offene Einheitskreisscheibe 𝔼 als Holomorphiegebiet.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.