Direkt zum Inhalt

Lexikon der Mathematik: stückweise differenzierbarer Weg

ein Weg γ : [a, b] → ℂ mit einer Parameterdarstellung tγ(t) = x(t)+ iy(t), die folgende Eigenschaft besitzt: Es gibt Punkte a1, a2, …, am+1 mit a = a1< a2<⋯ < am< am+1 = b derart, daß die eingeschränkten Funktionen \(x{|}_{[{a}_{\mu},{a}_{\mu +1}]}\) und \(y{|}_{[{a}_{\mu},{a}_{\mu +1}]}\) für µ = 1, …, m differenzierbar sind. Dies bedeutet, daß x und y an den Punkten aµ nur eine rechtsbzw. linksseitige Ableitung besitzen und diese nicht übereinstimmen müssen.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.