Direkt zum Inhalt

Lexikon der Mathematik: vollstetiger Operator

ein linearer Operator zwischen Banachräumen X und Y, der schwach konvergente Folgen (schwache Konvergenz) auf normkonvergente Folgen abbildet.

In der älteren Literatur werden die Begriffe „kompakt” und „vollstetig” synonym verwendet; die obige Definition ist jedoch von der eines kompakten Operators zu unterscheiden.

Jeder kompakte Operator ist vollstetig, ist X reflexiv, gilt auch die Umkehrung. Hingegen ist der identische Operator auf 1 vollstetig, aber nicht kompakt. Der Satz von Dunford-Pettis impliziert, daß jeder schwach kompakte Operator auf C(K) oder L1(μ) vollstetig ist.

[1] Diestel, J.; Jarchow, H.; Tonge, A.: Absolutely Summing Operators. Cambridge University Press, 1995.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.