Direkt zum Inhalt

Lexikon der Optik: Interferenzlängenmessung

Interferenzlängenmessung, Methode zur Messung von Längen in Einheiten der Lichtwellenlänge. Diese Vermessung erfolgt entweder direkt, indem die Zahl der Interferenzmaxima oder anderer periodisch wiederkehrender Intensitätswerte gezählt wird, oder indirekt, indem Maßverkörperungen der Länge in einem Interferenzkomparator vermessen oder verglichen werden.

Der direkte Vergleich einer Länge mit der Lichtwellenlänge erfolgt mit Hilfe von Laserwegmeßsystemen, wobei das Licht eines Lasernormals – meist ein Lamb-dip- oder J2-stabilisierter He-Ne-Laser – zur Beleuchtung eines Michelson-Interferometers verwendet wird (Abb. 1). Die I. beruht darauf, daß sich die Interferenzstreifen bei Bewegung eines der beiden Interferometerspiegel verschieben, wobei einer Verschiebung um einen Streifenabstand eine Änderung der Armlänge um eine halbe Wellenlänge entspricht. In modernen Geräten erfolgt die Zählung der Interferenzstreifen elektronisch, die bei Verschiebung des als Tripelspiegel ausgebildeten Spiegels um die zu messende Strecke einen Referenzpunkt passieren. Durch die Wanderung der Interferenzstreifen über die empfindliche Fläche eines Photodetektors erhält dessen Photostrom einen mit der Frequenz f=2v/λ oszillierenden Anteil. Dabei bezeichnen λ die Wellenlänge und v die (momentane) Geschwindigkeit, mit der sich der Spiegel bewegt. Mißt man daher f, so ergibt sich die Wegstrecke x2-x1 daraus durch zeitliche Integration in der Form

, wobei t(xi) die Zeit bezeichnet, zu der sich der Spiegel am Orte xi (i=1,2) befindet. Da das photoelektrische Signal einen Gleichspannungsanteil enthält, werden besondere Schaltungen verwendet, um zu reinen Wechselspannungen zu kommen. Ein gängiges Verfahren ist das folgende: Im Ausgange des Michelson-Interferometers werden mittels Polarisationsoptik 4 photoelektrische Signale gewonnen, die um 0°, 90°, 180° und 270° phasenverschoben sind (Abb. 1). Durch geeignete Kombinationen dieser Signale (Abb. 1b) in Differenzverstärkern lassen sich zu sin(2πft) bzw. cos(2πft) proportionale Signale ableiten, die für eine jitter-stabile Vorwärts-Rückwärts-Zählung benötigt werden.

Ein anderes gängiges Verfahren (Abb. 2) nutzt die Frequenzverschiebung, die monochromatisches Licht aufgrund des Doppler-Effektes bei der Reflexion an einem bewegten Spiegel erleidet. Durch Verwendung von 2-Frequenz-Lasern lassen sich dabei Methoden der Heterodyninterferometrie zur Anwendung bringen. Bedingt durch eine Zeeman-Aufspaltung der Laserniveaus sendet der Laser zwei Wellen unterschiedlicher Frequenz ν1 bzw. ν2 aus, die in entgegengesetztem Sinne zirkular polarisiert sind. Die Laserstrahlung wird mittels einer λ/4-Platte in zwei senkrecht zueinander polarisierte Wellen verwandelt und einerseits über einen Teiler nebst Polarisator mit einem Photodetektor in eine reine Referenz-Wechselspannung U0cos(2π[ν21]t) umgewandelt und andererseits zur Beleuchtung eines mit Tripelspiegeln ausgerüsteten Michelson-Interferometers mit einem Polarisationsstrahlenteiler im Eingange benutzt. Dadurch wird erreicht, daß das Licht im Referenz- und im Meßstrahlengange unterschiedliche Frequenzen ν1 bzw. ν2 besitzt. Eine Verschiebung des Meßtripelprismas hat aufgrund des Doppler-Effektes eine Frequenzverschiebung δν=2vν2/c= 2v2 zur Folge, wobei v die Geschwindigkeit des bewegten Spiegels, c die Lichtgeschwindigkeit und λ2 die zur Frequenz ν2 gehörige Wellenlänge bezeichnen. Photoelektrisch werden die Signale mit der Zeitabhängigkeit cos(2π[ν21]t) und cos(2π(ν21±δν)t) aufgenommen und die Frequenzen in getrennten Zählern gezählt; anschließend wird mit jedem Referenzakt die vorzeichenrichtige Differenz gebildet. Die Summation der Differenzen ergibt dann die Wegstrecke in der Form:




Interferenzlängenmessung 1: Michelson-Interferometer mit 4 um jeweils 90°
phasenverschobenen Ausgängen zur Längenmessung. a) Anordnung,
b) elektrische Signalverarbeitung.
A, B, C, D Photodetektoren,
WO1,2 Wollaston-Prismen;
T1, T2 Strahlenteiler.



Interferenzlängenmessung 2: Heterodyninterferometer zur Längenmessung.
P1, P2 Polarisatoren;
D1, D2 Photodetektoren;
PST Polarisationsstrahlenteiler.

  • Die Autoren
Roland Barth, Jena
Dr. Artur Bärwolff, Berlin
Dr. Lothar Bauch, Frankfurt / Oder
Hans G. Beck, Jena
Joachim Bergner, Jena
Dr. Andreas Berke, Köln
Dr. Hermann Besen, Jena
Prof. Dr. Jürgen Beuthan, Berlin
Dr. Andreas Bode, Planegg
Prof. Dr. Joachim Bohm, Berlin
Prof. Dr. Witlof Brunner, Zeuthen
Dr. Eberhard Dietzsch, Jena
Kurt Enz, Berlin
Prof. Joachim Epperlein, Wilkau-Haßlau
Prof. Dr. Heinz Falk, Kleve
Dr. Wieland Feist, Jena
Dr. Peter Fichtner, Jena
Dr. Ficker, Karlsfeld
Dr. Peter Glas, Berlin
Dr. Hartmut Gunkel, Berlin
Dr. Reiner Güther, Berlin
Dr. Volker Guyenot, Jena
Dr. Hacker, Jena
Dipl.-Phys. Jürgen Heise, Jena
Dr. Erwin Hoffmann, Berlin (Adlershof)
Dr. Kuno Hoffmann, Berlin
Prof. Dr. Christian Hofmann, Jena
Wolfgang Högner, Tautenburg
Dipl.-Ing. Richard Hummel, Radebeul
Dr. Hans-Jürgen Jüpner, Berlin
Prof. Dr. W. Karthe, Jena
Dr. Siegfried Kessler, Jena
Dr. Horst König, Berlin
Prof. Dr. Sigurd Kusch, Berlin
Dr. Heiner Lammert, Mahlau
Dr. Albrecht Lau, Berlin
Dr. Kurt Lenz, Berlin
Dr. Christoph Ludwig, Hermsdorf (Thüringen)
Rolf Märtin, Jena
Ulrich Maxam, Rostock
Olaf Minet, Berlin
Dr. Robert Müller, Berlin
Prof. Dr. Gerhard Müller, Berlin
Günter Osten, Jena
Prof. Dr. Harry Paul, Zeuthen
Prof. Dr. Wolfgang Radloff, Berlin
Prof Dr. Karl Regensburger, Dresden
Dr. Werner Reichel, Jena
Rolf Riekher, Berlin
Dr. Horst Riesenberg, Jena
Dr. Rolf Röseler, Berlin
Günther Schmuhl, Rathenow
Dr. Günter Schulz, Berlin
Prof. Dr. Johannes Schwider, Erlangen
Dr. Reiner Spolaczyk, Hamburg
Prof. Dr. Peter Süptitz, Berlin
Dr. Johannes Tilch, Berlin (Adlershof)
Dr. Joachim Tilgner, Berlin
Dr. Joachim Träger, Berlin (Waldesruh)
Dr. Bernd Weidner, Berlin
Ernst Werner, Jena
Prof. Dr. Ludwig Wieczorek, Berlin
Wolfgang Wilhelmi, Berlin
Olaf Ziemann, Berlin


Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.