Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Astrophysik: 100 Jahre und quicklebendig. Die astronomische Bedeutung der allgemeinen Relativitätstheorie

Vor hundert Jahren, am 25. November 1915, stellte Albert Einstein die Feldgleichungen seiner allgemeinen Relativitätstheorie vor und setzte so einen Schlussstein auf ein epochales Theoriengebäude.
Albert Einstein 1921

Wie jede physikalische Theorie muss sich auch die allgemeine Relativitätstheorie von Albert Einstein daran messen lassen, ob die direkten Vorhersagen, die sich aus ihr ergeben, durch Experimente bestätigt werden können. Im Fall der Astronomie – wo sich die Gegenstände des Forschungsinteresses eher selten bis gar nicht im Labor untersuchen lassen – müssen Beobachtungen die Rolle der Tests übernehmen. Wie hat Einsteins Theorie hier abgeschnitten? Und wie sieht es mit ihren Anwendungen in der modernen astronomischen Forschung aus?

Albert Einstein (1879 – 1955) selbst hatte sich bei der Formulierung seiner Theorie auch von einer speziellen astronomischen Beobachtung leiten lassen. Merkur, der sonnennächste Planet, umrundet die Sonne auf einer stark elliptischen Bahn. Solange man beide Himmelskörper isoliert betrachtet, sollte diese Bahn gemäß der Gravitationstheorie von Isaac Newton (1642 – 1726) unveränderlich im Raum liegen. Nimmt man die Anziehungskräfte der weiteren Planeten hinzu, ergibt sich, dass sich die große Halbachse der Bahnellipse und somit auch die Lage des sonnennächsten Bahnpunkts, des Perihels, mit der Zeit um die Sonne dreht (siehe Bild S. 42). Nach Newton sollte diese Periheldrehung 5,3 Bogensekunden pro Jahr betragen. Doch genaue Messungen ab Mitte des 19. Jahrhunderts ergaben den größeren Wert von 5,7 Bogensekunden pro Jahr. Einstein war überzeugt, dass die Differenz grundlegender Natur sei. Als er zwischen 1911 und 1915 seine allgemeine Relativitätstheorie formulierte, die Newtons Theorie erweitert und der Gravitation eine fundamental neue Deutung als Verzerrung der Raumzeit gibt, hatte er sich auch davon leiten lassen, diese anomale Periheldrehung des Merkur zu reproduzieren, die modernen Messungen zufolge 0,43 Bogensekunden pro Jahr beträgt.

Kennen Sie schon …

Sterne und Weltraum – Ursprung des Lebens

Ist unsere Erde der einzige Planet, der Leben hervorbrachte? Ist das Entstehen von Leben tatsächlich so selten und ist es nicht eine zwingende Konsequenz, sobald die Voraussetzungen dafür gegeben sind? Wir beleuchten die Entstehung des Lebens auf der Erde und ob sich dieser Vorgang anderswo im Weltraum wiederholen kann. Darüber hinaus informieren wir Sie über das Debakel um Boeings Starliner, das in einem unbemannten Rückflug von der ISS gipfelte. Sie erfahren von einem an der Gaia-Mission beteiligten Insider Details über das bevorstehende Ende der Mission und wir zeigen die erste hochaufgelöste Galaxienkarte des ESA-Teleskops Euclid. Weiter präsentieren wir Ihnen jede Menge astronomische Himmelsereignisse des Jahres 2025 und Sie erhalten den »Astro-Planer 2025«, mit dem Sie keines dieser Beobachtungs-Highlights verpassen.

Spektrum der Wissenschaft – Vielfältige Quanten

Wir tauchen ein in die Welt der Quanten, die uns noch immer zahlreiche Rätsel aufgibt. Forscher entwickeln ständig neue Modelle und hinterfragen Grundlegendes, wie beispielsweise das Konzept der Zeit. Gleichzeitig macht die Entwicklung neuer Quantencomputer große Fortschritte und könnte unsere Verschlüsselungssysteme bedrohen. Experten arbeiten an neuen Methoden, um unsere Daten zu schützen. Erfahren Sie, wie diese Herausforderungen gemeistert werden und ob Kryptografen den Wettlauf gegen die Zeit gewinnen können.

Sterne und Weltraum – Swing-by – Raumsonde JUICE im Billardspiel mit Mond und Erde

Die europäische Raumsonde JUICE führte ein wichtiges Swing-by-Manöver am Erde-Mond-System durch, um mittels der Schwerkraft zu beschleunigen. Dabei half erstmals auch der Mond mit. Bis 2029 folgen drei weitere Planetenvorbeiflüge, um 2031 dann Jupiter und seine Galileischen Monde zu erreichen. Wir informieren Sie über die Details der Mission. Im zweiten Teil unserer Serie über Observatorien berichten wir über das Extremely Large Telescope (ELT) der ESO, das in der chilenischen Atacama-Wüste gebaut wird. Ein langjähriger ESO-Mitarbeiter beschreibt uns den Fortschritt des Großprojekts. Das ELT soll ähnliche Durchbrüche wie die Weltraumteleskope Hubble und James Webb ermöglichen. Darüber hinaus beleuchten wir die wissenschaftshistorische Bedeutung der Werke des Philosophen Immanuel Kant, der dieses Jahr 300 Jahre alt geworden wäre, und zeigen in unserem Praxisbericht, wie Sie vom Boden aus mit amateurastronomischen Mitteln Raumstationen am Himmel fotografieren können.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.