Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Quantensimulation: Der frühe Kosmos im Labor

Weil sich der Raum kurz nach dem Urknall dramatisch ausgedehnt hat, konnte aus Fluktuationen im Vakuum reale Materie hervorgehen. Sie bestimmt heute die Struktur des Universums. Manche Aspekte jener Expansion lassen sich experimentell nachstellen, indem man ultrakalte Atomwolken geschickt manipuliert.
In einer magneto-optischen Falle leuchten inmitten grüner Laserstrahlen und Messaufbauten rötlich Atome, die in der Schwebe gehalten werden

Die Beobachtung von Galaxien zeigt, dass die Materie im Universum nicht gleichmäßig verteilt ist, sondern eine komplizierte Struktur hat. Der Großteil von ihr befindet sich in Filamenten, die wie Fäden durch einen sonst fast leeren Raum gespannt sind. Diese Materieverteilung geht auf winzige Dichteschwankungen im frühen Universum zurück. Sie sind durch ihre eigene Schwerkraft im Lauf von Jahrmilliarden zu einem kosmischen Netz herangewachsen.

Laut der am weitesten verbreiteten Theorie sind die ursprünglichen Dichteunterschiede in einem sehr frühen Stadium des Universums entstanden, während der »kosmologischen Inflation«. In dieser Epoche expandierte das Universum schlagartig. Die Ausdehnung verlief so rapide, dass aus kleinsten quantenmechanischen Energieschwankungen im Vakuum plötzlich reale Paare von Teilchen hervorgingen.

Die Materie wurde zwar auf zufällige Weise aus dem Nichts erzeugt, dennoch folgt ihre Verteilung statistischen Regeln, die mit den mathematischen Eigenschaften des frühen Universums verknüpft sind. Wenn wir diese Gesetzmäßigkeiten testen und besser verstehen könnten, ergäben sich vielleicht neue Einsichten in die Geschichte des Weltalls.

Deswegen haben wir an der Universität Heidelberg einen Simulator entwickelt, der es erlaubt, einen kleinen Ausschnitt aus dem Prozess der Inflation experimentell nachzustellen und zu untersuchen. Er besteht aus einer 50 Mikrometer großen und nur einen Mikrometer dicken Wolke von 20 000 Kaliumatomen. Sie werden schwebend im Vakuum gehalten, bis fast auf den absoluten Temperaturnullpunkt gekühlt und mit Hilfe von Laserlicht und Magnetfeldern manipuliert.

Auf den ersten Blick erscheint dieses Unterfangen seltsam: Wie soll eine winzige Wolke aus Atomen die Dynamik des jungen Universums simulieren? Für eine Antwort muss ich etwas ausholen und erläutern, wie expandierende Strukturen von Raum und Zeit funktionieren und wie deren Aufbau mit der Ausbreitung von Licht verknüpft ist. Außerdem benötigen wir ein paar grund­legende Informationen zu Vakuum und Teilchen in der Quantenfeldtheorie sowie zu den Eigenschaften von ultrakalten Quantengasen. Dann wird hoffentlich klar, wie wir Letztere gezielt einsetzen, um ein stark vereinfachtes Modell des Universums ins Labor zu holen …

Kennen Sie schon …

Sterne und Weltraum – Ursprung des Lebens

Ist unsere Erde der einzige Planet, der Leben hervorbrachte? Ist das Entstehen von Leben tatsächlich so selten und ist es nicht eine zwingende Konsequenz, sobald die Voraussetzungen dafür gegeben sind? Wir beleuchten die Entstehung des Lebens auf der Erde und ob sich dieser Vorgang anderswo im Weltraum wiederholen kann. Darüber hinaus informieren wir Sie über das Debakel um Boeings Starliner, das in einem unbemannten Rückflug von der ISS gipfelte. Sie erfahren von einem an der Gaia-Mission beteiligten Insider Details über das bevorstehende Ende der Mission und wir zeigen die erste hochaufgelöste Galaxienkarte des ESA-Teleskops Euclid. Weiter präsentieren wir Ihnen jede Menge astronomische Himmelsereignisse des Jahres 2025 und Sie erhalten den »Astro-Planer 2025«, mit dem Sie keines dieser Beobachtungs-Highlights verpassen.

Spektrum - Die Woche – Klimakonferenz in Trumps Schatten

Am 11. November begann die 29. Klimakonferenz der Vereinten Nationen (COP29). Angesichts steigender CO₂-Emissionen und erschöpfter natürlicher Puffer wie Wälder und Ozeane steht die Weltgemeinschaft vor großen Herausforderungen.

Spektrum der Wissenschaft – Vielfältige Quanten

Wir tauchen ein in die Welt der Quanten, die uns noch immer zahlreiche Rätsel aufgibt. Forscher entwickeln ständig neue Modelle und hinterfragen Grundlegendes, wie beispielsweise das Konzept der Zeit. Gleichzeitig macht die Entwicklung neuer Quantencomputer große Fortschritte und könnte unsere Verschlüsselungssysteme bedrohen. Experten arbeiten an neuen Methoden, um unsere Daten zu schützen. Erfahren Sie, wie diese Herausforderungen gemeistert werden und ob Kryptografen den Wettlauf gegen die Zeit gewinnen können.

  • Quellen

Tolosa-Simeón, M. et al.:Curved and expanding spacetime geometries in Bose-Einstein condensates. Physical Review A 106, 2022

Unruh, W. G.:Experimental black-hole evaporation? Physical ­Review Letters 46, 1981

Viermann, C. et al.:Quantum field simulator for dynamics in curved spacetime. Nature 611, 2022

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.