Direkt zum Inhalt

Mathematik: Das Geheimnis der Rorschachformen

Mit zehn Farbkleksen versuchte der Schweizer Psychoanalytiker Hermann Rorschach im Jahr 1921, die seelische Gesundheit seiner Patienten zu ergründen. Der auf den Faltbildern basierende Test entwickelte sich im 20. Jahrhundert zu einem weltbekannten Diagnoseverfahren der Psychologie, dessen Aussagekraft aus heutiger Sicht allerdings umstritten ist. Menschen fühlen sich von den Tintenbildern an etliche verschiedene Objekte erinnert. Bei einigen der Formen sind bis zu 300 verschiedene Deu­­­­­­­­tungen bekannt.

Nun meint eine Gruppe aus Physikern, Mathema­tikern und Psychologen um Richard P. Taylor von der University of Oregon in Eugene den Grund dafür gefunden zu haben, weshalb manche Klekse ein größeres Assoziationspotenzial bergen als andere. Offenbar ist die Deutung der Formen immer dann besonders ergiebig, wenn ihr Rand einen eher geringen Grad an Komplexität aufweist.

Die Tintenklekse lassen sich mit so genannten Fraktalen beschreiben. Darunter verstehen Mathematiker unregelmäßige Muster, die sich wiederholen, wenn man die Ober­fläche eines Objekts vergrößert. Fraktale Strukturen kommen auch in der Natur vor, zum Beispiel bei Schneeflocken und Wolken. Bereits 1990 stellten Wissenschaftler die Vermutung auf, dass Naturformen vor allem dann die Fantasie anregen, wenn ihre frakta­len Merkmale nur schwach ausgeprägt sind. Das gilt laut der Forschungsarbeit von Taylor und seinen Kollegen auch für Rorschach-Bilder. Das Team entwickelte eine Kennzahl, die Werte zwischen 1,0 und 2,0 annehmen kann und als Maß für die fraktale Komplexität am Rand der zehn historischen Figuren diente. Liegt die Zahl bei 1,0, ist der Rand einer Form glatt wie eine Linie. Nähert sie sich 2,0, ist die Umrandung einer Figur stark zerklüftet.

Die Forscher verglichen die von einem Computer­algorithmus berechneten Kennzahlen mit Aufzeichnungen von Psychologen aus den 1930er und 1950er Jahren. Diese hatten festgehalten, mit wie vielen Objekten die jeweiligen Rorschach-Faltbilder von Patienten in Verbindung gebracht wurden. Dabei stieß Taylors Team auf eine deutliche Korrelation: Je niedriger die Kennzahl eines Kleckses, desto mehr Deutungen hatte er hervorgerufen. Das bestätigte sich bei einem Test in der Gegenwart. Die Wissenschaftler ließen einen Algorithmus verschiedene Rorschach-Formen erstellen und zeigten sie anschließend 23 amerikanischen Psychologiestudenten. Auch diese fühlten sich an umso mehr Objekte erinnert, je geringer die fraktale Komplexität des Randes einer Figur war. Dabei zeigte sich allerdings, dass ein geringes Maß an Zerklüftung nötig zu sein scheint, um die Fantasie anzuregen: Eine Figur mit komplett glattem Rand löst den Wissenschaftlern zufolge kaum Assoziatio­nen aus.

  • Quellen
PLoS One 10.1371/journal.pone.0171289, 2017

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.