Quantengravitation: Die Zähmung des Unendlichen
Ein großer Teil der Faszination Schwarzer Löcher rührt von der Frage her, was sich wohl in ihrem Inneren verbirgt. Astronomen haben überzeugende Hinweise auf die Existenz solcher Objekte an vielen Orten im Universum, etwa als Überbleibsel von Explosionen massereicher Sterne oder im Zentrum von Galaxien, und können sie als Quellen von Gravitationswellen seit 2015 sogar auf ganz neue Weise untersuchen. Albert Einsteins allgemeine Relativitätstheorie beschreibt alle damit verbundenen Phänomene mit erstaunlicher Präzision. Hier sind Schwarze Löcher kompakte Massen, die das dynamische Gefüge von Raum und Zeit, die »Raumzeit«, extrem verbiegen – so sehr, dass ihnen selbst Licht nicht entkommen kann.
Doch Schwarze Löcher offenbaren zugleich eine entscheidende Schwachstelle der Relativitätstheorie. Rechnerisch ist die Raumzeit exakt in ihrem Zentrum unendlich stark gekrümmt – hier sitzt eine »Singularität«. Seit Jahrzehnten ringen Wissenschaftler um eine Interpretation, denn Unendlichkeiten sind in der Physik ein klares Zeichen für eine unvollständige Theorie: Liefert diese als Antwort auf eine physikalische Frage unendliche Werte, ist sie nicht mehr anwendbar. Die allgemeine Relativitätstheorie macht also fast überall im Universum sehr genau überprüfbare Vorhersagen, doch im Inneren eines Schwarzen Lochs verliert sie ihre Gültigkeit. Hier brauchen wir ein besseres Verständnis der Raumzeit. Was vernachlässigt die allgemeine Relativitätstheorie auf dem Weg zur Singularität?
Eine Antwort könnte die Quantenphysik liefern. Ihre Effekte spielen in allen anderen fundamentalen Wechselwirkungen (der elektromagnetischen sowie der starken und der schwachen Wechselwirkung) eine wichtige Rolle, fließen aber nicht in die allgemeine Relativitätstheorie ein. Diese ist eine klassische, deterministische Beschreibung der Natur, bei der Beobachtungsgrößen feste Werte haben. Im Gegensatz dazu sind bei einer Quantentheorie für die Messwerte nur Wahrscheinlichkeitsaussagen möglich. Beispielsweise ist der Ort, an dem man Quantenobjekte aufspürt, nicht stets derselbe, sondern schwankt um einen Mittelwert – selbst, wenn man das Experiment immer auf gleiche Weise durchführt. Einsteins Theorie hingegen hat als klassische Feldtheorie keinen Platz für solche Wahrscheinlichkeiten. ...
Schreiben Sie uns!
Beitrag schreiben