Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.
Ein neues Molekül des Lebens?
So genannte Peptidnukleinsäuren, synthetische Zwitter aus Protein und DNA, könnten der Ausgangspunkt für die Entwicklung neuartiger Medikamente sein. Vielleicht ermöglichen sie aber auch die Konstruktion künstlicher Organismen.
Die enorme Vielfalt der Lebensformen auf unserem Planeten – von winzigen Bakterien bis zu majestätischen Walen, von Sonnenlicht verwertenden Pflanzen bis zu Endolithen, die sich tief unter der Erde von Mineralen ernähren – beruht auf einem einzigen universellen Funktionsprinzip: dem "zentralen Dogma der Molekularbiologie". Demnach speichert das Erbmolekül DNA die genetische Information, während RNA-Moleküle als Arbeitskopien von Genen fungieren, nach deren Vorlage die Ribosomen Proteine synthetisieren. Die Eiweißstoffe wiederum bilden Strukturelemente der Gewebe und dienen in Form von Enzymen als "Arbeitspferde" der Zellen.
So überwältigend der Erfolg dieses Dogmas war und ist, träumen manche Wissenschaftler davon, künstliche Lebensformen zu schaffen, die ganz anders funktionieren. Zum einen wollen sie damit die Mindestanforderungen an einen Organismus herausbekommen und so ergründen, was das Leben im Kern ausmacht und wie es auf der Erde entstanden ist.
Zum anderen reizt es sie einfach, zu probieren, was geht. Im Endeffekt wollen sie einen neuen Satz von Molekülen entwickeln, die das Gleiche können wie ihre natürlichen Gegenstücke: durch Selbstorganisation komplexere Einheiten bilden, eine Energiequelle nutzen sowie sich vermehren und weiterentwickeln.
Für eine zentrale Rolle bei diesem Unternehmen bieten sich Peptidnukleinsäuren (PNAs) an. Sie können wie DNA und RNA Informationen tragen. Doch ihr Rückgrat besteht nicht aus einer Wechselfolge von Zuckermolekülen und Phosphatgruppen, sondern aus einem einfacher aufgebauten und noch dazu stabileren Aminosäurestrang. Meine Arbeitsgruppe hat vor mehr als 15 Jahren die ersten Exemplare synthetisiert. Damals ging es uns weniger um die Erschaffung neuer Lebensformen als um konkrete, schnell verwertbare Ergebnisse. Wir wollten Medikamente konzipieren, die sich gezielt an ein vorgegebenes Gen anlagern und so dessen Expression (die Herstellung des darin kodierten Proteins) entweder blockieren oder verstärken.
Vom Prinzip her ähnelt dieser Ansatz dem Antisense- Konzept, bei dem kurze DNA- oder RNA-Stränge zum Einsatz kommen, die sich ebenfalls an die Arbeitskopien eines Gens heften und dadurch dessen Expression verhindern.
PNAs sollten gegenüber Antisense-DNAs oder -RNAs jedoch gleich mehrere Vorteile bieten: Sie sind vielseitiger, weil sie sich an jede Art von Nukleinsäure und nicht nur an RNAs anlagern können; sie heften sich fester an ihre Zielstruktur, und sie werden im enzymreichen zellulären Milieu nicht so leicht ...
So überwältigend der Erfolg dieses Dogmas war und ist, träumen manche Wissenschaftler davon, künstliche Lebensformen zu schaffen, die ganz anders funktionieren. Zum einen wollen sie damit die Mindestanforderungen an einen Organismus herausbekommen und so ergründen, was das Leben im Kern ausmacht und wie es auf der Erde entstanden ist.
Zum anderen reizt es sie einfach, zu probieren, was geht. Im Endeffekt wollen sie einen neuen Satz von Molekülen entwickeln, die das Gleiche können wie ihre natürlichen Gegenstücke: durch Selbstorganisation komplexere Einheiten bilden, eine Energiequelle nutzen sowie sich vermehren und weiterentwickeln.
Für eine zentrale Rolle bei diesem Unternehmen bieten sich Peptidnukleinsäuren (PNAs) an. Sie können wie DNA und RNA Informationen tragen. Doch ihr Rückgrat besteht nicht aus einer Wechselfolge von Zuckermolekülen und Phosphatgruppen, sondern aus einem einfacher aufgebauten und noch dazu stabileren Aminosäurestrang. Meine Arbeitsgruppe hat vor mehr als 15 Jahren die ersten Exemplare synthetisiert. Damals ging es uns weniger um die Erschaffung neuer Lebensformen als um konkrete, schnell verwertbare Ergebnisse. Wir wollten Medikamente konzipieren, die sich gezielt an ein vorgegebenes Gen anlagern und so dessen Expression (die Herstellung des darin kodierten Proteins) entweder blockieren oder verstärken.
Vom Prinzip her ähnelt dieser Ansatz dem Antisense- Konzept, bei dem kurze DNA- oder RNA-Stränge zum Einsatz kommen, die sich ebenfalls an die Arbeitskopien eines Gens heften und dadurch dessen Expression verhindern.
PNAs sollten gegenüber Antisense-DNAs oder -RNAs jedoch gleich mehrere Vorteile bieten: Sie sind vielseitiger, weil sie sich an jede Art von Nukleinsäure und nicht nur an RNAs anlagern können; sie heften sich fester an ihre Zielstruktur, und sie werden im enzymreichen zellulären Milieu nicht so leicht ...
Schreiben Sie uns!
Beitrag schreiben