Differenzialgeometrie: Glatte Fraktale
Eigentlich kennt man den amerikanischen Mathematiker John Nash als Pionier der Spieltheorie und Schöpfer des nach ihm benannten Gleichgewichtsbegriffs. Über dieser Leistung, die ihm 1994 den Wirtschaftsnobelpreis einbrachte, ist ein anderer Geniestreich von ihm fast in Vergessenheit geraten. In den 1950er Jahren entdeckte Nash, dass ein als unlösbar geltendes geometrisches Problem Lösungen im Überfluss hat. Es geht darum, eine "isometrische Einbettung" zu finden, eine Abbildung von der Ebene auf eine gekrümmte Fläche mit der Eigenschaft, dass alle Längen erhalten bleiben.
Ein paar Seiten mathematischer Argumentation genügten Nash, um aus der Unmöglichkeit eine Möglichkeit zu machen und dabei einige vermeintliche Gewissheiten über den Haufen zu werfen. Es gab nur eine ärgerliche Kleinigkeit: Obwohl niemand ernsthaft bezweifelte, dass eine isometrische Einbettung existiert, konnte niemand sie sich vorstellen, und deswegen verstand auch niemand sie richtig. Dank einer Kombination von Mathematik und Informatik ist es uns gelungen, diese Lücke zu schließen. Das Resultat ist eine Fläche von ganz neuem Typ; wir haben sie als glattes Fraktal bezeichnet, weil sie über gewisse Eigenschaften eines Fraktals verfügt.
Unsere Arbeit stützt sich auf eine Theorie namens "konvexe Integration", die der russisch-französische Mathematiker Mikhail Gromov entwickelt hat. Unter anderem von Nashs Arbeiten inspiriert, liefert sie ein mächtiges Werkzeug zur Lösung zahlreicher Probleme aus dem Grenzbereich von Geometrie und Analysis. Sie ist so abstrakt formuliert, dass irgendwelche Anwendungen undenkbar schienen; dem ist jedoch nicht so, wie wir zeigen konnten. Gromovs Theorie erlaubt es, sehr konkret gewisse Klassen von partiellen Differenzialgleichungen zu lösen – das sind solche, deren Unbekannte Funktionen mehrerer Veränderlicher sind. ...
Schreiben Sie uns!
1 Beitrag anzeigen