Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Mathematik: Auf dem Weg zur chromatischen Zahl der Ebene

Wie viele Farben braucht man mindestens, um eine Ebene so auszumalen, dass jeweils zwei Punkte mit gleichem Abstand unterschiedlich gefärbt sind? Ein Hobbymathematiker, der hauptberuflich das Altern bekämpfen will, hat bei ­diesem berühmten Problem den ersten Fortschritt seit 60 Jahren erzielt.
De Greys Graph

1950 stellte der damalige Student Edward Nelson eine Frage, die Mathematiker seitdem beschäftigt. Er ersann dazu einen Graphen (eine Sammlung von als Knoten bezeichneten Punkte, die durch Kanten verbunden sind), dessen Kanten alle gleich lang sind und gemeinsam mit den Knoten in einer Ebene liegen. Nelson fragte sich, wie viele Farben man mindestens braucht, um einen beliebigen Graphen dieser Art – selbst einen mit unendlich vielen Knoten – zu kolorieren, wenn zwei verbundene Knoten niemals die gleiche Farbe haben dürfen.

Dieses Rätsel, das heute auch als "Hadwiger-Nelson-Problem" oder "Frage nach der chromatischen Zahl der Ebene" bekannt ist, hat das Interesse vieler Mathematiker geweckt. Schnell fanden einige Experten heraus, dass ein solcher Graph nicht weniger als vier und nicht mehr als sieben Farben benötigt. Andere Forscher fanden in den folgenden Jahrzehnten weitere Teilergebnisse, aber ­niemandem gelang es, die chromatische Zahl der Ebene weiter einzuschränken ...

Kennen Sie schon …

Spektrum der Wissenschaft – Formen der Mathematik

Die Mathematik ist ein erstaunlich vielfältiges Fach und zeigt sich in den verschiedensten Formen: Lesen Sie von den bunten Fraktalen der Mandelbrotmenge, einer Einstein-Kachel, die den Boden mit erstaunlichen, lückenlosen Mustern versieht oder den Falten eines zerknitterten Papiers. Diese unterschiedlichen Strukturen bergen spannende mathematische Eigenschaften, die Fachleute in den letzten Jahren entdeckt und zum Staunen gebracht haben. Darüber hinaus stellen wir die Frage, warum Kieselsteine oval sind und zeigen Ihnen, nach welchen Regeln die faszinierenden Sandzeichnungen auf dem südpazifischen Archipel Vanuatu entstehen.

Spektrum - Die Woche – »Das fühlt sich an wie eine Narkose«

Menschen im Winterschlaf? Was in dieser Zeit mit dem Körper passieren würde und wieso die Raumfahrt daran so interessiert ist, lesen Sie im aktuellen Titelthema der »Woche«. Außerdem: Zwischen den Zeilen einer Heiligenschrift aus dem Jahr 510 lässt sich das Alltagsleben am Donaulimes entdecken.

Spektrum der Wissenschaft – Das Geheimnis der Dunklen Energie

Seit ihrer Entdeckung ist der Ursprung der Dunklen Energie rätselhaft. Neue Teleskope und Theorien sollen Antworten geben. Außerdem: Mit DNA-Spuren aus Luft oder Wasser lässt sich die Verbreitung verschiedenster Arten störungsfrei erfassen. Lassen sich riesigen Süßwasservorkommen, die unter mancherorts unter dem Meeresboden liegen, als Reserven nutzen? RNA-Ringe sind deutlich stabiler als lineare RNA-Moleküle und punkten daher als Arzneimittel der nächsten Generation. Ein Mathematiker ergründete auf Vanuatu, wie die Sandzeichnungen der Bewohner mit mathematischen Graphen zusammenhängen.

  • Quelle

De Grey, A. D. N. J.:The Chromatic Number of the Plane is at least 5. In:arXiv, 1804.02385, 2018

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.