Algebraische Geometrie: Junges Paar löst altes Problem
Verteilt man zwei Punkte in eine Ebene, dann gibt es stets eine Gerade, die beide verbindet. Diese Tatsache ist Gelehrten seit Tausenden Jahren bewusst. Wenn jedoch mehr Punkte verstreut sind, hat man Pech. Es ist unwahrscheinlich, dass eine einzige Gerade sie alle trifft. Allerdings kann man durch drei beliebig gelegene Punkte immer einen Kreis ziehen und durch fünf Punkte einen Kegelschnitt (eine Ellipse, Parabel oder Hyperbel) zeichnen.
Diese Überlegungen haben mit einer der wichtigsten Fragen der Geometrie zu tun, das Interpolationsproblem: Wann lässt sich eine Kurve definieren, die beliebig viele Punkte in n Dimensionen trifft? »Eigentlich geht es dabei darum zu verstehen, was Kurven sind«, erklärt der Mathematiker Ravi Vakil von der Stanford University.
Obwohl Kurven in hochdimensionalen Räumen seit Hunderten von Jahren mit ausgeklügelten Mitteln untersucht werden, sind sie extrem schwer zu fassen …
Von »Spektrum der Wissenschaft« übersetzte und bearbeitete Fassung des Artikels »Old Problem About Mathematical Curves Falls to Young Couple« aus »Quanta Magazine«, einem inhaltlich unabhängigen Magazin der Simons Foundation, die sich die Verbreitung von Forschungsergebnissen aus Mathematik und den Naturwissenschaften zum Ziel gesetzt hat.
Schreiben Sie uns!
Beitrag schreiben