Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Informatik: Form versus Textur

Moderne Bilderkennungsprogramme funktionieren meist beeindruckend treffsicher. Doch manchmal unterlaufen ihnen peinliche Fehler. Das könnte daran liegen, dass sich die Algorithmen auf die Textur von Objekten statt auf ihre Form konzentrieren.

Eine der größten Stärken aktueller künstlicher Intelligenzen (KIs) ist das Klassifizieren von Bildern – einige von ihnen übertreffen dabei sogar in mancher Hinsicht Menschen. Allerdings können gelegentlich kleinste Veränderungen diese Algorithmen aus dem Konzept bringen. Bearbeitet man beispielsweise Bilder, so dass das Fell einer Katze getigert, gepunktet oder gefleckt erscheint, erkennen Menschen die Tiere in den meisten Fällen immer noch problemlos, während Maschinen völlig versagen.

Forscher von der Universität Tübingen haben nun die mögliche Ursache dafür entdeckt, wie sie auf der im Mai 2019 stattgefundenen »International Conference on Learning Representations« (ICLR) erklärten: Während Menschen größtenteils auf die Form eines Objekts achten, fokussieren maschinell lernende Algorithmen auf ihre Textur. Dieses überraschende Ergebnis verdeutlicht, wie unterschiedlich Menschen und Maschinen Dinge »wahrnehmen« …

Logo des Quanta Magazine

Von »Spektrum der Wissenschaft« übersetzte und bearbeitete Fassung des Artikels »Where We See Shapes, AI Sees Textures« aus »Quanta Magazine«, einem inhaltlich unabhängigen Magazin der Simons Foundation, die sich die Verbreitung von Forschungsergebnissen aus Mathematik und den Naturwissenschaften zum Ziel gesetzt hat.

Kennen Sie schon …

Spektrum - Die Woche – Die Illusion der Willenskraft

Warum wir nicht an zu wenig Disziplin scheitern und welche Strategien wirklich helfen, Ziele leichter zu verfolgen erfahren Sie in dieser Ausgabe von »Die Woche«. Außerdem: KI-Hype im Kommentar, wie das Muskelgedächtnis funktioniert, wieso das Feuer in Crans-Montana so tödlich war und mehr.

Spektrum - Die Woche – Unsere Forschungshighlights aus 2025

Fortschritte in der Krebsimmuntherapie, neue Erkenntnisse zum Altern, Entwicklungen in der Quantenphysik, KI in der Mathematik und bedeutende astronomische Beobachtungen: In der letzten »Woche«-Ausgabe des Jahres 2025 blicken wir auf die zentralen Forschungsergebnisse zurück.

Spektrum - Die Woche – Ein alter KI-Ansatz für wahre maschinelle Intelligenz?

Wahre maschinelle Intelligenz – Transparenz und feste Regeln zeigen einen Weg, die KI die Fähigkeit geben könnte, logische Schlüsse zu ziehen. Außerdem: Eisen für die Energiewende verbrennen, das Paradoxon fehlender Information im Universum und Schaden Energydrinks dem Gehirn Jugendlicher?

  • Quellen

Brendel, W., Bethge, M.:Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet. International Conference on Learning Representations, 2019

Geirhos, R. et al.:ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. International Conference on Learning Representations, 2019

Geirhos, R. et al.:Generalisation in humans and deep neural networks. Advances in Neural Information Processing Systems, 2018

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.