Direkt zum Inhalt

Multimessenger-Astronomie: Erster Nachweis: Verschmelzende Neutronensterne

Ein Glücksfall für die Forschung: Erstmals gelang es, mit Gravitationswellen und in allen Bereichen des elektromagnetischen Spektrums – von den hochenergetischen Gammastrahlen über das sichtbare Licht bis zu der langwelligen Radiostrahlung – die Kollision von zwei Neutronensternen in einer fernen Galaxie zu beobachten.
Verschmelzende Neutronensterne

Das Signal kam blitzartig: Am 17. August 2017, um 12:41:06 Uhr Weltzeit, löste der Gamma-Ray Burst Monitor (GBM) an Bord des Weltraumteleskops Fermi Alarm aus. Gamma-Ray Bursts, zu deutsch Gammastrahlenausbrüche oder Gammablitze, entsprechen einem kurzen, hellen Aufleuchten einer astronomischen Quelle im hochenergetischen Bereich des elektromagnetischen Spektrums. Dass der GBM-Detektor anschlug, war für sich genommen nichts Ungewöhnliches – das Instrument hat jederzeit rund 75 Prozent des Himmels im Blick und weist alle paar Tage einen neuen Gammablitz nach. Dann wird das auf Gammastrahlen spezialisierte Fermi-Teleskop so gedreht, dass sein zweites Instrument, das Large Area Telescope, die Umgebung der Gammastrahlenquelle in Augenschein nehmen kann.

Außerdem wird bei einem solchen Alarm automatisch eine Meldung abgesetzt, eine so genannte GCN-Notice, die binnen einer Sekunde über das Internet an interessierte Beobachter weitergeleitet wird, die dem Gamma-Ray Burst Coordinates Network (GCN) angeschlossen sind. Wer ein robotisches Teleskop betreibt, kann den Beobachtungsprozess mit Hilfe solcher Benachrichtigungen automatisieren: Sofort nach Anschlagen des GBM fährt ein solches Teleskop selbsttätig die Himmelsregion an, in welcher der Gammablitz verortet wurde. Allerdings ist die von Fermi abgeschätzte Position nicht sehr genau; interessant sind die Benachrichtigungen daher vornehmlich für Teleskope mit größerem Blickfeld.

Sechs Minuten, nachdem der GBM-Detektor angeschlagen hatte, wurde klar, dass die Lage diesmal alles andere als gewöhnlich war, sondern dass Messungen und Beobachtungen bevorstanden, die es in dieser Form noch nie zuvor gegeben hatte. Bevor wir zu den Details kommen, wollen wir uns in Erinnerung rufen, was die Astronomen überhaupt über Gammablitze wissen – genauer: was sie bis zu diesem 17. August 2017 bereits wussten ...

Kennen Sie schon …

Spektrum der Wissenschaft – Vielfältige Quanten

Wir tauchen ein in die Welt der Quanten, die uns noch immer zahlreiche Rätsel aufgibt. Forscher entwickeln ständig neue Modelle und hinterfragen grundlegende Dinge, wie beispielsweise das Konzept der Zeit. Gleichzeitig macht die Entwicklung neuer Quantencomputer große Fortschritte und könnte unsere Verschlüsselungssysteme bedrohen. Experten arbeiten an neuen Methoden, um unsere Daten zu schützen. Erfahren Sie, wie diese Herausforderungen gemeistert werden und ob Kryptografen den Wettlauf gegen die Zeit gewinnen können.

Sterne und Weltraum – Swing-by – Raumsonde JUICE im Billardspiel mit Mond und Erde

Die europäische Raumsonde JUICE führte ein wichtiges Swing-by-Manöver am Erde-Mond-System durch, um mittels der Schwerkraft zu beschleunigen. Dabei half erstmals auch der Mond mit. Bis 2029 folgen drei weitere Planetenvorbeiflüge, um 2031 dann Jupiter und seine Galileischen Monde zu erreichen. Wir informieren Sie über die Details der Mission. Im zweiten Teil unserer Serie über Observatorien berichten wir über das Extremely Large Telescope (ELT) der ESO, das in der chilenischen Atacama-Wüste gebaut wird. Ein langjähriger ESO-Mitarbeiter beschreibt uns den Fortschritt des Großprojekts. Das ELT soll ähnliche Durchbrüche wie die Weltraumteleskope Hubble und James Webb ermöglichen. Darüber hinaus beleuchten wir die wissenschaftshistorische Bedeutung der Werke des Philosophen Immanuel Kant, der dieses Jahr 300 Jahre alt geworden wäre, und zeigen in unserem Praxisbericht, wie Sie vom Boden aus mit amateurastronomischen Mitteln Raumstationen am Himmel fotografieren können.

Spektrum Kompakt – Rätsel der Teilchenphysik

Das Standardmodell sollte das Universum erklären, doch manche Fragen bleiben offen. Um Antworten zu erhalten, werden aufwändige Untersuchungen durchgeführt: zu der Masse von Neutrinos, dem Rätsel der Dunklen Materie und warum sich Materie über Antimaterie durchsetzte.

  • Quellen

Abbott, B. P. et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. In: Physical Review Letters 119, 161101, 2017

LIGO Scientific Collaboration et al: Multi-Messenger Observations of a Binary Neutron Star Merger. In: The Astrophysical Journal Letters 848:L12, 2017

LIGO Scientific Collaboration et al: Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. In: The Astrophysical Journal Letters 848:L13, 2017

Schutz, B. F.: Determining the Hubble Constant from Gravitational Wave Observations. In: Nature 323, S. 310- 311, 1986

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.