Quantengravitation: Stachelige Oberflächen für die Schwerkraft
Die moderne Physik beruht auf so genannten Quantenfeldtheorien (QFT): Demnach durchziehen wogende Quantenfelder unsere Raumzeit und erzeugen die bekannten Elementarteilchen und Grundkräfte, indem sie miteinander wechselwirken. Anders als klassische Felder wie das Erdmagnetfeld, das überall auf der Welt einen eindeutigen Zahlenwert annimmt, sind die quantenphysikalischen Versionen komplizierter: Möchte man etwa den Aufenthaltsort eines Elektrons bestimmen, erhält man eine Art Matrix mit unendlich vielen Zeilen und Spalten. Denn das Teilchen besitzt an jeder Stelle im Raum eine gewisse Aufenthaltswahrscheinlichkeit – genau das drückt das Quantenfeld aus.
Neben den vielen Vorteilen, die der Formalismus bietet (immerhin gilt die als Standardmodell bekannte Quantenfeldtheorie als die erfolgreichste Theorie aller Zeiten), birgt er auch zwei entscheidende Probleme: Zum Einen lassen sich die zugehörigen Gleichungen, welche die Quantensysteme beschreiben, ohne starke Vereinfachungen meist nicht lösen. Zum anderen konnte man die Schwerkraft als einzige der vier Grundkräfte bisher nicht durch eine Quantenfeldtheorie ausdrücken.
Doch 1981 gelang dem Quantenphysiker Alexander Polyakov, heute an der Princeton University, eine erstaunliche Leistung: Er entwickelte ein Modell für ein zweidimensionales Universum – und konnte die zu Grunde liegenden Formeln exakt berechnen, indem er Wahrscheinlichkeitstheorie und theoretische Physik miteinander verknüpfte. Auch wenn das System weit davon entfernt ist, unsere Welt realistisch zu beschreiben, stellt es ein beeindruckendes Resultat dar.
Dennoch behagte das Ergebnis Mathematikerinnen und Mathematikern nicht, denn die Lösung war ein Zufallsfund. Es gab keine Erklärung, wie und warum die Methode funktionierte. Damit ließ sie sich nicht ohne weiteres auf andere Beispiele übertragen. Doch nun, fast vier Jahrzehnte später, ist es Vincent Vargas von der École normale supérieure in Paris, Rémi Rhodes von der Université Aix-Marseille, Antti Kupiainen von der Universität Helsinki, François David vom Institut de Physique Théorique in Saclay und Colin Guillarmou von der Univ0ersité Paris-Saclay endlich gelungen, eine solide Basis für Polyakovs Resultate zu schaffen – und sie damit auch für andere nutzbar zu machen.
Die Arbeiten stellen einen Meilenstein dar, da sie ein Beispiel für eine Quantenfeldtheorie liefern, die sich vollständig berechnen lässt, ohne auf Näherungsverfahren zurückzugreifen …
Schreiben Sie uns!
Beitrag schreiben