Teilchenphysik: Mit Bleiionen zurück zum Urknall
Den ersten großen Erfolg verbuchte der Large Hadron Collider (LHC), als Forscher mit seiner Hilfe 2012 ein neues elementares Teilchen dingfest machten, mutmaßlich das lange gesuchte Higgs-Boson. Doch die Jagd nach neuen Teilchen ist nicht die einzige Aufgabe der LHC-Wissenschaftler am europäischen Forschungszentrum CERN. Sie wollen auch einen Materiezustand untersuchen, wie er kosmologischen Modellen zufolge bis etwa zehn millionstel Sekunden nach dem Urknall das Universum bestimmte: das Quark-Gluon-Plasma oder QGP.
Um es zu erzeugen, schießen Teilchenphysiker statt leichter Protonen schwere Bleiionen aufeinander. Bei der folgenden Kollision entsteht ein "Feuerball": ein räumlich ausgedehnter Bereich sehr hoher Energiedichte, erfüllt von einem komplexen System aus elementaren und stark miteinander wechselwirkenden Teilchen. Diese umfassen mehrere Sorten von Quarks – von ganz leicht bis sehr schwer –, entsprechenden Antiquarks sowie Gluonen, die Trägerteilchen der starken Kernkraft.
Bei bisherigen Experimenten existiert das Plasma gerade einmal rund 10–23 Sekunden lang, expandiert in dieser Zeit sehr rasch und kühlt dabei ab. Bei rund 170 Megaelektronvolt – Teilchenphysiker messen Temperatur in Energieeinheiten – "frieren" die Quarks und Gluonen des Plasmas dann zu Teilchen und Antiteilchen aus, die vom Kollisionspunkt wegfliegen und von Detektoren gemessen werden. ...
Schreiben Sie uns!
Beitrag schreiben