Direkt zum Inhalt

Physik: Dunkle Materie im Sog der Sonne

Bei der Suche nach Dunkler Materie müssen Physiker den Einfluss der Sonne stärker berücksichtigen. Zu diesem Schluss kommen Forscher um Samuel K. Lee von der Princeton University (New York). Ihren Berechnungen zufolge bündelt unser Zentralgestirn den Strom Dunkler-Materie-Teilchen, der das Sonnensystem ständig durchdringt. Das hat Einfluss darauf, wann im Jahresverlauf Detektoren für solche Teilchen maximal ausschlagen.

Die Dunkle Materie besteht vermutlich aus bisher unbekannten, schwer nachweisbaren Elementarteilchen, die sich wie ein feiner Nebel zwischen den Sternen verteilen. Auf seinem Weg um das galaktische Zentrum pflügt unser Sonnensystem permanent durch diesen Nebel. Die Folge davon ist ein ständiger "Fahrtwind" aus Dunkler Materie, der die Erde kontinuierlich durchdringt. Forscher versuchen schon seit Jahren, die exotischen Teilchen mit speziellen Messgeräten (Detektoren) im Untergrund einzufangen.

Bewegt sich die Erde auf ihrem Sonnenumlauf in dieselbe Richtung wie das Sonnensystem, ist ein besonders starker "Fahrtwind" zu erwarten. Die Dunkle-Materie-Detektoren sollten dann ausnehmend viele Signale verzeichnen. Nach bisherigen Rechnungen tritt dies jeweils Anfang Juni ein. Die Forscher um Lee kommen jedoch zu einem anderen Schluss. Gemäß ihren Berechnungen zieht die Sonne mit ihrer Schwerkraft den Dunkle-Materie-Strom auf sich und bündelt ihn in ihrem "Kielwasser". Dort bewege sich die Erde hindurch – und spüre den maximalen "Fahrtwind" deshalb schon im Mai statt im Juni. Der Effekt trete bei Dunkle-Materie-Teilchen mit Massen oberhalb von 15 Gigaelektronenvolt auf. Der Dunkle-Materie-Detektor DAMA im italienischen Gran-Sasso-Untergrundlabor registriert seit Jahren ein schwankendes Signal, das stets im Mai am stärksten ist – in Übereinstimmung mit den neuen Ergebnissen. Allerdings sind die Resultate des DAMA-Teams bisher nicht von anderen Experimenten bestätigt worden.

Kennen Sie schon …

Sterne und Weltraum – Ursprung des Lebens

Ist unsere Erde der einzige Planet, der Leben hervorbrachte? Ist das Entstehen von Leben tatsächlich so selten und ist es nicht eine zwingende Konsequenz, sobald die Voraussetzungen dafür gegeben sind? Wir beleuchten die Entstehung des Lebens auf der Erde und ob sich dieser Vorgang anderswo im Weltraum wiederholen kann. Darüber hinaus informieren wir Sie über das Debakel um Boeings Starliner, das in einem unbemannten Rückflug von der ISS gipfelte. Sie erfahren von einem an der Gaia-Mission beteiligten Insider Details über das bevorstehende Ende der Mission und wir zeigen die erste hochaufgelöste Galaxienkarte des ESA-Teleskops Euclid. Weiter präsentieren wir Ihnen jede Menge astronomische Himmelsereignisse des Jahres 2025 und Sie erhalten den »Astro-Planer 2025«, mit dem Sie keines dieser Beobachtungs-Highlights verpassen.

Sterne und Weltraum – Gravitationswellen – Wie ist der Status bei gemessenen Signalen?

Gravitationswellendetektoren messen seit April 2024 wieder Signale von Schwarzen Löchern – in unserer Titelgeschichte erfahren Sie mehr über die neuen Erkenntnisse zu diesen rätselhaften Objekten. Darüber hinaus zeigen wir Ihnen die Technik der JANUS-Kamera auf der europäischen Raumsonde JUICE, die im Juli 2031 Jupiter und seine Monde detailliert erkunden soll. Wir berichten über die erfolgreiche Probennahme von der Mondrückseite mit der chinesischen Sonde Chang’e 6 und zeigen neue Aufnahmen des Weltraumteleskopes Euclid.

Spektrum der Wissenschaft – Vom Quant zur Materie

In den letzten Jahrzehnten haben sich Quantenfeldtheorien durchgesetzt, um grundlegende physikalische Phänomene unseres Universums zu erklären. Aber nicht alle physikalischen Effekte lassen sich damit erklären. Manche Erscheinungen lassen sich nicht stimmig in das Standardmodell der Teilchenphysik integrieren. Das reicht von subtilen Effekten wie der Tatsache, dass Neutrinos sich ineinander umwandeln bis hin zur auf großen Skalen wirkenden Schwerkraft. »Vom Quant zur Materie« stellt die subatomaren Spielregeln der Teilchenphysik vor und erklärt deren Bausteine. Wir berichten beispielsweise, wie sich Atome mit Lichtpulsen manipulieren lassen, ob es eine vierte Variante von Neutrinos gibt, und stellen kompakte Plasmabeschleuniger vor.

  • Quelle

Lee, S. K. et al.:Effect of Gravitational Focusing on Annual Modulation in Dark-Matter Direct-Detection Experiments. In: Physical Reviews Letters 112, 011301, 2014

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.