Quantengravitation: Kosmischer Korrekturcode
1994 waren Quantencomputer plötzlich in aller Munde. Der US-Mathematiker Peter Shor hatte gerade gezeigt, wie die Geräte im Prinzip moderne Kryptografieverfahren knacken können, indem sie große Zahlen sehr schnell in ihre Faktoren zerlegen. Quantencomputer waren seinerzeit rein hypothetisch, und ihrer Konstruktion stand vor allem ein grundlegendes Problem im Weg: die Empfindlichkeit der physikalischen Bauteile.
Im Gegensatz zu den binären Bits in gewöhnlichen Rechnern bestehen diese »Qubits« aus Quantenobjekten. Ihr Wert liegt nicht fest, sondern es lassen sich bis zum Zeitpunkt der Messung nur Wahrscheinlichkeiten angeben, ein Qubit in einem der Zustände |0〉 oder |1〉 anzutreffen. Außerdem können sich die noch ungewissen Zustände zweier Qubits aneinanderkoppeln, sie sind daraufhin »verschränkt«. Dann hängen die möglichen Zustände jedes Qubits von denjenigen aller anderen ab. Mit jeder Rechenoperation wird das verfügbare Kontingent unterschiedlicher Wahrscheinlichkeiten größer. Die Anzahl all dieser gleichzeitig vorliegenden Einstellungen wächst exponentiell. Wenn es gelingt, sie zu erhalten und zu manipulieren, macht das Quantencomputer enorm leistungsfähig – zumindest theoretisch …
Von »Spektrum der Wissenschaft« übersetzte und bearbeitete Fassung des Artikels »How Space and Time Could Be a Quantum Error-Correcting Code« aus »Quanta Magazine«, einem inhaltlich unabhängigen Magazin der Simons Foundation, die sich die Verbreitung von Forschungsergebnissen aus Mathematik und den Naturwissenschaften zum Ziel gesetzt hat.
Schreiben Sie uns!
Beitrag schreiben