Teilchenphysik: Der idealen Flüssigkeit auf der Spur
Theoretische Physiker versuchen seit Langem, das so genannte Quark-Gluon-Plasma zu verstehen. In diesem Zustand befanden sich die Elementarteilchen wenige Sekundenbruchteile nach dem Urknall. Unter normalen Umständen sind Quarks und Gluonen nicht einzeln beobachtbar, sondern treten nur gebunden auf. Im Plasma dagegen bewegen sie sich nahezu frei.
Eine Heidelberger Forschergruppe um Jan M. Pawlowski stellt nun eine Methode vor, mit der die Eigenschaften dieser Materie berechnet werden können. Anders als die meisten bisherigen Verfahren ist ihres für beliebige Temperaturen anwendbar. Die Forscher ermitteln damit, wie sich das Plasma unter extrem dichten und heißen Bedingungen, wie unmittelbar nach dem Urknall, verhält. Außerdem können sie nachvollziehen, wie sich die Eigenschaften beim Abkühlen verändern. Das ist besonders wichtig, um manche Experimente an Teilchenbeschleunigern zu verstehen.
Im Jahr 2005 haben Forscher am Relativistic Heavy Ion Collider (RHIC) in den USA das Quark-Gluon-Plasma erstmals künstlich hergestellt. Die Experimentatoren beschleunigten Goldteilchen auf nahezu Lichtgeschwindigkeit und ließen sie dann zusammenstoßen. Wenn solche Partikel kollidieren, steigt die Temperatur auf einige Billionen Kelvin. Unter derartigen Bedingungen lösen sich Protonen und Neutronen in ihre Bestandteile auf, in Quarks und Gluonen. Für kurze Zeit bilden diese ein Quark-Gluon-Plasma. Nach der Kollision kühlt dieses ab. Es formen sich die üblichen Zweier- und Dreiergruppen von Quarks, die so genannten Hadronen, zu denen auch die Bausteine der Atomkerne zählen. ...
Schreiben Sie uns!
Beitrag schreiben